MATH 637 - Homework 4

Due: April 25th, 5:15 PM

Submit your solutions to Canvas as a PDF file. You may scan (or take a good picture of) a handwritten document, but they will be returned ungraded if they are not legible.

You can use any results that have been stated/proven in class.

Question 1 (3\%)

Consider the following independent random variables

- X: a Bernoulli random variable with probability of success 0.9 . That is:

$$
X= \begin{cases}1 & \text { with probability } 0.9 \\ 0 & \text { with probability } 0.1\end{cases}
$$

- $Y_{1}, Y_{2}, \ldots Y_{25}$ are independent and

$$
Y_{i}=\left\{\begin{array}{ll}
2 & \text { with probability } 0.05 \\
0 & \text { with probability } 0.95
\end{array} \quad \text { for } 1 \leq i \leq 25\right.
$$

(a) Compute $P\left[X>Y_{i}\right]$
(b) Compute

$$
P\left[X>\max _{1 \leq i \leq 25}\left\{Y_{i}\right\}\right]
$$

Question 2 (2\%)

Let X be a non-negative random variable with $E[\ln (X)]=2$. Show that

$$
P[X \geq 1000]<0.3
$$

Question 3 (3\%)

Let $X_{1}, X_{2}, \ldots, X_{100}$ be i.i.d copies of a random variable $X \in[-1,1]$ and $E[X]=0$. Denote

$$
S=X_{1}+X_{2}+\ldots+X_{100}
$$

Show that

$$
P[|S| \geq 60]<0.05
$$

Question 4 (2\%)

Given a class \mathcal{H} of real-valued functions that map the input space \mathcal{X} to $\mathcal{Y}=\{-1,1\}$ and a sample $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \in \mathcal{X}$, the empirical Rademacher complexity of \mathcal{H} given S is defined as:

$$
\operatorname{Rad}(\mathcal{H})=\mathbb{E}_{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}}\left[\sup _{f \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} f\left(x_{i}\right)\right]
$$

where $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}$ are independent random variables drawn from the Rademacher distribution

$$
P\left[\sigma_{i}=1\right]=P\left[\sigma_{i}=-1\right]=1 / 2
$$

Show that $0 \leq \operatorname{Rad}(\mathcal{H}) \leq 1$.

