Mathematical techniques in data science

Lecture 4: Logistic Regression
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Last lecture: Nearest Neighbors

General steps to build ML models

Get and pre-process data
Visualize the data (optional)
Split data into training/test sets

Create a model

Predict on test data

°
°

°

@ Train the model on training set; i.e. call model.fit()

°

e Compute evaluation metrics (accuracy, mean squared error, etc.)
°

Visualize the trained model (optional)
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Underfiting/Overfitting

KNN: K=1 KNN: K=100
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Underfiting/Overfitting

Underfit Optimum Overfit
(high bias) (high variance)
N * *
* % *
* Pk * %k
*
L e * * ***
* K ok k % * * K R
High training error Low training error Low training error
High test error Low test error High test error

(Source: IBM)
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Underfiting/Overfitting

estimation

error

high bias low bias
low variance high variance

Test error

Training error

2 .

— model
underfit overfit complexity
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Nearest neighbors: pros and cons

Pros:
@ Simple algorithm
o Easy to implement, no training required
@ Can learn complex target function
Cons:
@ Prediction is slow

e Don't work well with high-dimensional inputs (e.g., more than 20
features)

Lecture 4: Logistic Regression Mathematical techniques in data science



Logistic r
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Supervised learning

new
example
labeled : . e
- machine learning prediction
training . rule
algorithm
examples
predicted
classification

Learning a function that maps an input to an output based on example
input-output pairs
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Supervised learning: Classification

Hand-written digit recognition (MNIST dataset)
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Classification algorithms

Logistic regression
Linear Discriminant Analysis
Support Vector Machines

Nearest neighbours
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Logistic regression

@ Despite the name "“regression”, is a classifier

@ Only for binary classification

e Data point (x, y) where
o x = (x1,%2,...,Xq) IS a vector with d features
e y is the label (0 or 1)

@ Logistic regression models P[y = 1|.X = x]

@ Then

Ply = 0[X =x] = 1— Ply = 1|X = x]
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Logistic regression

Convert to
Linear transform probability

X ? P(y = 1|x)

Linear transform

Convert to
probability
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Logistic regression

Convert to
Linear transform probability

x wix+b P(y = 1]|x)

Linear transform —— wlx+ b
y
1
p
Convert to
probability
0
X
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Logistic function and logit function

Transformation between (—o0,00) and [0, 1]

0.5
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logit(p) = log %
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Logistic regression

Convert to
Linear transform probability 1
X wa +b U
14+ewxP
Linear transform —— wTx +b
y
1
p
Convert to 1
probability 14 e Wb
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Logistic regression

@ Model: Given X = x, Y is a Bernoulli random variable with
parameter p(x) = P[Y = 1|X = x| and

logit(p(x)) = Bo + Bix1 + ... + Baxa

for some vector 3 = (B, B1, - . ., Bq) € RITL.
e Goal: Find B that best "fits" the data
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To review

e Probability/Statistics

e Independence

e Bernoulli random variables

e Maximum-likelihood (ML) estimation
e Calculus

e Partial derivatives
e Finding critical points of a function
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Parameter estimation

e Data: (Xla y1)7 (X27y2)> ) (xm)/n)' we have
@ For a Bernoulli r.v. with parameter p

PlY =y]=p"(1-p)*, ye{01}

@ Likelihood of the parameter (probability of the dataset):

L(B) = H p(xi, B)Y (1 — p(x;, B))Y
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Parameter estimation: maximum likelihood

@ The log-likelihood can be computed as
() = log L()
=Y lvilog p(xi, B) + (1 - yi) log(L — p(xi, 8))]

i=1
e Maximize /() to find 5 — the maximum-likelihood method
@ The term
—[ylog(p) + (1 = y)log(1 — p)]

is known in the field as the log-loss, or the binary cross-entropy loss
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Logistic regression: estimating the parameter

@ The optimization needs to be performed by a numerical optimization
method

@ Penalties can be added to regularize the problem to avoid overfitting

maxE Z |Bil
or

. 1
min —L(B) + c Z,: 182
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Logistic regression with more than 2 classes

@ Suppose now the response can take any of {1,..., K} values

@ We use the categorical distribution instead of the Bernoulli
distribution

o Model
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Softmax function
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Logistic regression: pros and cons

Pros:
e Simple algorithm
@ Prediction is fast
e Easy to implement

@ The forward map has a closed-form formula of the derivatives
ot u e B
—(8) = E YiXij — Xj——— | -
8ﬁ_]( ) P 17}y U1—|—eXiT6

Cons:

@ Linear model
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How to make logistic regression better?

We want a model that

@ compute the derivatives (of the objective function, with respect to the
parameters) easily

@ can capture complex relationships

This is difficult because complex models often have high numbers of
parameters and don't have closed-form derivatives, and computations of

ol o Ux+e)—LUx)
o5, ~ =

are large (and unstable)
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How to make logistic regression better?

@ Automatic differentiation and back-propagation
@ ldeas:
e Organizing information using graphs (networks)

e Chain rule
(fog)(x)=r'(g(x))g'(x)
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