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Logistic regression

e Data point (x, y) where

o x=(x1,%,...,Xq) IS a vector with d features
o y is the label (0 or 1)

e Logistic regression models Ply = 1|X = x]
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Logistic regression
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Logistic regression with more than 2 classes

@ Suppose now the response can take any of {1,..., K} values

@ We use the categorical distribution instead of the Bernoulli
distribution

o Model
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Softmax function
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Logistic regression: pros and cons

Pros:
e Simple algorithm
@ Prediction is fast
e Easy to implement

@ The forward map has a closed-form formula of the derivatives

of u e B
Tﬁj(ﬁ) => [y,'Xij - Xij] :

i=1 1447

Cons:

@ Linear model
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How to make logistic regression better?

We want a model that

@ computes the derivatives (of the objective function, with respect to
the parameters) easily

@ can capture complex relationships

This is difficult because complex models often have high numbers of
parameters and don't have closed-form derivatives, and computations of

O o\ UB )~ U(Bx)
a5, )~ ‘

are costly (and unstable)
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Ideas

@ Automatic differentiation and back-propagation
@ ldeas:
e Organizing information using graphs (networks)

e Chain rule
(fog)(x)="f"(g(x)g'(x)
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Neural networks
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Logistic neuron
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Neural circuit
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Feed-forward neural networks
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Feed-forward neural networks

hidden neurons

output neurons
input neurons
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Feed-forward neural networks

@ Structure:
e Graphical representation
e Activation functions

@ Training:
e Loss functions

e Stochastic gradient descent
e Back-propagation
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Activation functions
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Activation functions
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If we do not apply an activation function, then the output signal would
simply be a simple linear function of the input signals
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Activation functions

Activation Functlons

Slgm0|d Leaky ReLU :
_ max(0.1z, x)
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Logistic function (sigmoid function)

Transformation between (—o0,00) and [0, 1]

—f(x):logi"_—x
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Hyperbolic tangent

Sigmoid functic
Tanh function
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Hyperbolic tangent

sigmoid

Function output

Input value

Vanishing gradient problem
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Rectified linear unit (ReLU)
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Rectified linear unit (ReLU)

e
/

/
/

Advantage: model sparsity, cheap to compute (no complicated math),
partially address the vanishing gradient problem

Issue: Dying RelLU
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Leaky relu

yi =0

|
|
I
| Yi = 04T;
[
[
|

I
ReLU Leaky ReLU/PReLU

Lecture 5: Neural networks Mathematical techniques in data science 24 /50



Exponential Linear Unit (ELU, SELU)
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Softmax function
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Feed-forward neural networks (multi-class classification)




Feed-forward neural networks

@ Structure:
e Graphical representation
e Activation functions

@ Training:
e Loss functions

e Stochastic gradient descent
e Back-propagation

Lecture 5: Neural networks Mathematical techniques in data science 28 /50



Train feed-forward neural networks
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o Data:
(Xlayl)a (x2).y2)a DRI (Xm}’n)
@ Model parameters:

0 =Wy, by, Wo, by, ..., Wy, by)

@ Training: Find the best value of
0 that fits the data
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Maximum-likelihood method

@ Average log-likelihood

1 n
L(0) = - Z log P(y = yilxi, 6)
i=1

@ Model parameters:
0= (Wl7 bla W2> b27 teey WL) bL)

e Training: Maximize £(0)

Lecture 5: Neural networks Mathematical techniques in data science 31/50



Cross-entropy loss (log loss)

@ Cross-entropy loss = negative log-likelihood:
(0) = —L£(0)

e Goal: Minimize ¢(0)
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One-hot encoding

id color id color_red color_blue color_green
1 red 1 1 [¢] [¢]
3 green 3 ] o] 1
4 blue 4 [¢] 1 (<]

Convert a categorical value into a binary vector with exactly one “1"
element, and the rest are 0
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Loss function for classification: cross-entropy

Code

def CrossEntropy(yHat, y):
if y == 1:
return -log(yHat)
else:
return -log(1 - yHat)
Math
In binary classification, where the number of classes M equals 2, cross-entropy can be calculated
as:
—(ylog(p) + (1 — y) log(1 — p))

If M > 2 (i.e. multiclass classification), we calculate a separate loss for each class label per
observation and sum the result.

M
- Z Yo.c 108(Po.c)

=1

Note: Here y, . is the one-hot encoding of the label and p, ( is the
predicted probability for the observation o is of class c, respectively
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Stochastic gradient descent
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Gradient descent

Gradient Descent
Minimize a function by moving in the opposite direction of the
gradient.

oJ

9;‘ = 9;‘ — ,()TH“

Figure: Gradient Descent. Source:
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loss

Oloss

; .
,// Gradient
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(Source: Sung Kim)
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Stochastic gradient descent

o Recall that our objective function has the form
00) = 1 Zn: L(O, xi, yi)
- n P b Iﬂyl

@ Mini-batch stochastic gradient descent

e randomly shuffle examples in the training set, divide them into k
mini-batches of data of size m
e for each batch /; (i=1, ..., k), approximate the empirical risk by

~ 1
JEI

and update 0 .
0+ 06— pVio)

e Repeat until an approximate minimum is obtained or a maximum
numbers M epochs are done
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Stochastic gradient descent: teminology

@ Mini-batch stochastic gradient descent

e randomly shuffle examples in the training set, divide them into k
mini-batches of data of size m
e for each batch /; (i=1, ..., k), approximate the objective function by

i) = 3" 10 5.)

JEi

and update 6 A
0+ 60— pVih)
e Repeat until an approximate minimum is obtained or a maximum
numbers M epochs are done
@ Terminology:

e m: batch-size
e p: learning rate
e M: number of epochs
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Stochastic gradient descent (SGD)
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Stochastic gradient descent

o Gradient descent converges to the local minimum, and the fluctuation
is small

@ SGD's fluctuation is large, but enables jumping to new/better local
minima
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Escaping local minima

4.0 1
a4
3.5 4
3.0 1
o 5
25 4
5
2.0 ®
15
14
1.0
0 1
0.5 1
0.0 14
-2 -1 0 1 2 -2 -1 0 1 2

Lecture 5: Neural networks Mathematical techniques in data science 42 /50



Automatic diffierentiation
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Stochastic gradient descent

@ The most computationally heavy part in the training of a neural net is

to compute
ol

39,‘71'

@ Numerical differentiation is not realistic, and symbolic differentiation
is impossible
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Automatic differentiation

@ Assume that
y = f(g(h(x)))

e Denote x = up, h(up) = u1, g(u1) = wo, f(u2) = uz =y, then

Q_ dy duiy1

duj dujyq duj
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Back-propagation

FORWARD PAGS (COMPUTE LOSS)

£
DC\\‘ L2E Bt L
Wz 2WEH — =6 B —L =341
o EBE 5

BRACKWARD PASS (compuTe derivATives)
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Back-propagation

D A T
O QO Q) »= softmax(W3h;, + b3)
) hy = c(W3h, + by)

) hy=ocWix+b,)

Input: x

Use chain rule to compute V/(6)

or ot ap

9 ). Oh,
8b1 ap Oho

oh

oh

hy, W5. b
——(ho, W3, b3) - Dby

- (h1, Wa, bo) - —=(x, Wy, br)
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Back-propagation

¢ ) p= softmax(Wghz + b3)

b .

) hy = o(Wihy + by)
-~

) hy =o(Wix+by)
'

Input: x

@ One forward pass to evaluate hy, hy, p, ¢

@ One backward pass to compute V/(6)
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Feed-forward neural networks
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Back-propagation

@ Advantage: The cost to compute the partial derivatives with respect
to all parameters are just twice the cost of a forward evaluations

e Drawback: The functions used to describe the network (activation
functions and loss functions) needs to belong to the class of functions
supported by the computational platform
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