Mathematical techniques in data science

Lecture 5: Neural networks

Logistic regression

- Data point (\mathbf{x}, y) where
- $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ is a vector with d features
- y is the label (0 or 1)
- Logistic regression models $P[y=1 \mid X=\mathbf{x}]$

Logistic regression

Convert to

Logistic regression with more than 2 classes

- Suppose now the response can take any of $\{1, \ldots, K\}$ values
- We use the categorical distribution instead of the Bernoulli distribution

$$
P[Y=k \mid X=\mathbf{x}]=p_{k}(\mathbf{x}), \quad \sum_{k=1}^{K} p_{k}(\mathbf{x})=1
$$

- Model

$$
p_{k}(\mathbf{x})=\frac{e^{w_{k}^{T} \mathbf{x}_{k}+b_{k}}}{\sum_{k=1}^{K} e^{w_{k}^{T} \mathbf{x}_{k}+b_{k}}}
$$

Softmax function

$$
\left[\begin{array}{l}
1.3 \\
5.1 \\
2.2 \\
0.7 \\
1.1
\end{array}\right] \longrightarrow \frac{e^{z_{i}}}{\sum_{j=1}^{K} e^{z_{j}}} \longrightarrow\left[\begin{array}{l}
0.02 \\
0.90 \\
0.05 \\
0.01 \\
0.02
\end{array}\right]
$$

Logistic regression: pros and cons

Pros:

- Simple algorithm
- Prediction is fast
- Easy to implement
- The forward map has a closed-form formula of the derivatives

$$
\frac{\partial \ell}{\partial \beta_{j}}(\beta)=\sum_{i=1}^{n}\left[y_{i} x_{i j}-x_{i j} \frac{e^{x_{i}^{T} \beta}}{1+e^{x_{i}^{T} \beta}}\right] .
$$

Cons:

- Linear model

How to make logistic regression better?

We want a model that

- computes the derivatives (of the objective function, with respect to the parameters) easily
- can capture complex relationships

This is difficult because complex models often have high numbers of parameters and don't have closed-form derivatives, and computations of

$$
\frac{\partial \ell}{\partial \beta_{i}}(\beta, x) \approx \frac{\ell\left(\beta+\epsilon_{i}, x\right)-\ell(\beta, x)}{\epsilon_{i}}
$$

are costly (and unstable)

Ideas

- Automatic differentiation and back-propagation
- Ideas:
- Organizing information using graphs (networks)
- Chain rule

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

Neural networks

Logistic neuron

Why neuron?

Neural circuit

Feed-forward neural networks

Feed-forward neural networks

Feed-forward neural networks

- Structure:
- Graphical representation
- Activation functions
- Training:
- Loss functions
- Stochastic gradient descent
- Back-propagation

Activation functions

Activation functions

If we do not apply an activation function, then the output signal would simply be a simple linear function of the input signals

Activation functions

Activation Functions

Sigmoid
$\sigma(x)=\frac{1}{1+e^{-x}}$

$\boldsymbol{t a n h}$
$\tanh (x)$

ReLU
$\max (0, x)$

Leaky ReLU
$\max (0.1 x, x)$

Maxout

$\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)$

ELU
$\begin{cases}x & x \geq 0 \\ \alpha\left(e^{x}-1\right) & x<0\end{cases}$

Logistic function (sigmoid function)

Transformation between $(-\infty, \infty)$ and $[0,1]$

$f(x)=\frac{e^{x}}{1+e^{x}}$

$$
\operatorname{logit}(p)=\log \frac{p}{1-p}
$$

Hyperbolic tangent

- Sigmoid function
- Tanh function

Hyperbolic tangent

Vanishing gradient problem

Rectified linear unit (ReLU)

Rectified linear unit (ReLU)

Advantage: model sparsity, cheap to compute (no complicated math), partially address the vanishing gradient problem Issue: Dying ReLU

Leaky relu

ReLU

Leaky ReLU/PReLU

Exponential Linear Unit (ELU, SELU)

Softmax function

$$
\left[\begin{array}{l}
1.3 \\
5.1 \\
2.2 \\
0.7 \\
1.1
\end{array}\right] \longrightarrow \frac{e^{z_{i}}}{\sum_{j=1}^{K} e^{z_{j}}} \longrightarrow\left[\begin{array}{l}
0.02 \\
0.90 \\
0.05 \\
0.01 \\
0.02
\end{array}\right]
$$

Feed-forward neural networks (multi-class classification)

Feed-forward neural networks

- Structure:
- Graphical representation
- Activation functions
- Training:
- Loss functions
- Stochastic gradient descent
- Back-propagation

Train feed-forward neural networks

Settings

- Data:

$$
\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)
$$

- Model parameters:

$$
\theta=\left(W_{1}, b_{1}, W_{2}, b_{2}, \ldots, W_{L}, b_{L}\right)
$$

- Training: Find the best value of θ that fits the data

Maximum-likelihood method

- Average log-likelihood

$$
\mathcal{L}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \log P\left(y=y_{i} \mid \mathbf{x}_{i}, \theta\right)
$$

- Model parameters:

$$
\theta=\left(W_{1}, b_{1}, W_{2}, b_{2}, \ldots, W_{L}, b_{L}\right)
$$

- Training: Maximize $\mathcal{L}(\theta)$

Cross-entropy loss (log loss)

- Cross-entropy loss $=$ negative log-likelihood:

$$
\ell(\theta)=-\mathcal{L}(\theta)
$$

- Goal: Minimize $\ell(\theta)$

One-hot encoding

id	color		id	color_red	color_blue	color_green
1	red	One Hot Encoding	1	1	\bigcirc	\bigcirc
2	blue		2	0	1	0
3	green		3	0	\bigcirc	1
4	blue		4	0	1	\bigcirc

Convert a categorical value into a binary vector with exactly one " 1 " element, and the rest are 0

Loss function for classification: cross-entropy

Code

```
def CrossEntropy(yHat, y):
    if y == 1:
        return -log(yHat)
    else:
        return - log(1 - yHat)
```


Math

In binary classification, where the number of classes M equals 2, cross-entropy can be calculated as:

$$
-(y \log (p)+(1-y) \log (1-p))
$$

If $M>2$ (i.e. multiclass classification), we calculate a separate loss for each class label per observation and sum the result.

$$
-\sum_{c=1}^{M} y_{o, c} \log \left(p_{o, c}\right)
$$

Note: Here $y_{o,:}$ is the one-hot encoding of the label and $p_{o, c}$ is the predicted probability for the observation o is of class c, respectively

Stochastic gradient descent

Gradient descent

Gradient Descent

Minimize a function by moving in the opposite direction of the gradient.

$$
\theta_{i}:=\theta_{i}-\rho \frac{\partial J}{\partial \theta_{i}}
$$

Figure: Gradient Descent. Source:

Gradient descent

(Source: Sung Kim)

Stochastic gradient descent

- Recall that our objective function has the form

$$
\ell(\theta)=\frac{1}{n} \sum_{i=1}^{n} L\left(\theta, x_{i}, y_{i}\right)
$$

- Mini-batch stochastic gradient descent
- randomly shuffle examples in the training set, divide them into k mini-batches of data of size m
- for each batch $I_{i}(\mathrm{i}=1, \ldots, \mathrm{k})$, approximate the empirical risk by

$$
\hat{\ell}(\theta)=\frac{1}{m} \sum_{j \in I_{i}} L\left(\theta, x_{j}, y_{j}\right)
$$

and update θ

$$
\theta \leftarrow \theta-\rho \nabla \hat{\ell}(\theta)
$$

- Repeat until an approximate minimum is obtained or a maximum numbers M epochs are done

Stochastic gradient descent: teminology

- Mini-batch stochastic gradient descent
- randomly shuffle examples in the training set, divide them into k mini-batches of data of size m
- for each batch $I_{i}(\mathrm{i}=1, \ldots, \mathrm{k})$, approximate the objective function by

$$
\hat{\ell}(\theta)=\frac{1}{m} \sum_{j \in I_{i}} L\left(\theta, x_{j}, y_{j}\right)
$$

and update θ

$$
\theta \leftarrow \theta-\rho \nabla \hat{\ell}(\theta)
$$

- Repeat until an approximate minimum is obtained or a maximum numbers M epochs are done
- Terminology:
- m: batch-size
- ρ : learning rate
- M : number of epochs

Stochastic gradient descent (SGD)

Stochastic gradient descent

- Gradient descent converges to the local minimum, and the fluctuation is small
- SGD's fluctuation is large, but enables jumping to new/better local minima

Escaping local minima

Automatic diffierentiation

Stochastic gradient descent

- The most computationally heavy part in the training of a neural net is to compute

$$
\frac{\partial \ell}{\partial \theta_{i, j}}
$$

- Numerical differentiation is not realistic, and symbolic differentiation is impossible

Automatic differentiation

- Assume that

$$
y=f(g(h(x)))
$$

- Denote $x=u_{0}, h\left(u_{0}\right)=u_{1}, g\left(u_{1}\right)=u_{2}, f\left(u_{2}\right)=u_{3}=y$, then

$$
\frac{d y}{d u_{i}}=\frac{d y}{d u_{i+1}} \frac{d u_{i+1}}{d u_{i}}
$$

Back-propagation

$$
\begin{aligned}
& \text { FORWARD PASS (COMPUTE LOSS) } \\
& \text { t } \\
& x \text { i... } \frac{\partial z}{\partial x}
\end{aligned}
$$

$$
\begin{aligned}
& \longleftarrow \text { BACKWARD PASS (compute derivatives) }
\end{aligned}
$$

Back-propagation

Use chain rule to compute $\nabla \ell(\theta)$

$$
\frac{\partial \ell}{\partial b_{1}}=\frac{\partial \ell}{\partial p}(p) \cdot \frac{\partial p}{\partial h_{2}}\left(h_{2}, W_{3}, b_{3}\right) \cdot \frac{\partial h_{2}}{\partial h_{1}}\left(h_{1}, W_{2}, b_{2}\right) \cdot \frac{\partial h_{1}}{\partial b_{1}}\left(x, W_{1}, b_{1}\right)
$$

Back-propagation

- One forward pass to evaluate h_{1}, h_{2}, p, ℓ
- One backward pass to compute $\nabla \ell(\theta)$

Feed-forward neural networks

Back-propagation

- Advantage: The cost to compute the partial derivatives with respect to all parameters are just twice the cost of a forward evaluations
- Drawback: The functions used to describe the network (activation functions and loss functions) needs to belong to the class of functions supported by the computational platform

