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Logistic regression

Data point (x, y) where
x = (x1, x2, . . . , xd) is a vector with d features
y is the label (0 or 1)

Logistic regression models P[y = 1|X = x]
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Logistic regression
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Logistic regression with more than 2 classes

Suppose now the response can take any of {1, . . . ,K} values
We use the categorical distribution instead of the Bernoulli
distribution

P[Y = k |X = x] = pk(x),
K∑

k=1

pk(x) = 1.

Model

pk(x) =
ew

T
k xk+bk∑K

k=1 e
wT
k xk+bk
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Softmax function
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Logistic regression: pros and cons

Pros:

Simple algorithm

Prediction is fast

Easy to implement

The forward map has a closed-form formula of the derivatives

∂ℓ

∂βj
(β) =

n∑
i=1

[
yixij − xij

ex
T
i β

1 + ex
T
i β

]
.

Cons:

Linear model
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How to make logistic regression better?

We want a model that

computes the derivatives (of the objective function, with respect to
the parameters) easily

can capture complex relationships

This is difficult because complex models often have high numbers of
parameters and don’t have closed-form derivatives, and computations of

∂ℓ

∂βi
(β, x) ≈ ℓ(β + ϵi , x)− ℓ(β, x)

ϵi

are costly (and unstable)
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Ideas

Automatic differentiation and back-propagation

Ideas:

Organizing information using graphs (networks)
Chain rule

(f ◦ g)′(x) = f ′(g(x))g ′(x)
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Neural networks
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Logistic neuron
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Why neuron?
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Neural circuit
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Feed-forward neural networks
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Feed-forward neural networks
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Feed-forward neural networks

Structure:

Graphical representation
Activation functions

Training:

Loss functions
Stochastic gradient descent
Back-propagation
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Activation functions
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Activation functions

If we do not apply an activation function, then the output signal would
simply be a simple linear function of the input signals
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Activation functions
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Logistic function (sigmoid function)

Transformation between (−∞,∞) and [0, 1]

f (x) =
ex

1 + ex
logit(p) = log

p

1− p
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Hyperbolic tangent
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Hyperbolic tangent

Vanishing gradient problem

Lecture 5: Neural networks Mathematical techniques in data science 21 / 50



Rectified linear unit (ReLU)
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Rectified linear unit (ReLU)

Advantage: model sparsity, cheap to compute (no complicated math),
partially address the vanishing gradient problem

Issue: Dying ReLU
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Leaky relu
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Exponential Linear Unit (ELU, SELU)
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Softmax function
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Feed-forward neural networks (multi-class classification)
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Feed-forward neural networks

Structure:

Graphical representation
Activation functions

Training:

Loss functions
Stochastic gradient descent
Back-propagation
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Train feed-forward neural networks
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Settings

Data:
(x1, y1), (x2, y2), . . . , (xn, yn)

Model parameters:

θ = (W1, b1,W2, b2, . . . ,WL, bL)

Training: Find the best value of
θ that fits the data
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Maximum-likelihood method

Average log-likelihood

L(θ) = 1

n

n∑
i=1

logP(y = yi |xi , θ)

Model parameters:

θ = (W1, b1,W2, b2, . . . ,WL, bL)

Training: Maximize L(θ)
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Cross-entropy loss (log loss)

Cross-entropy loss = negative log-likelihood:

ℓ(θ) = −L(θ)

Goal: Minimize ℓ(θ)
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One-hot encoding

Convert a categorical value into a binary vector with exactly one “1”
element, and the rest are 0
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Loss function for classification: cross-entropy

Note: Here yo,: is the one-hot encoding of the label and po,c is the
predicted probability for the observation o is of class c , respectively
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Stochastic gradient descent
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Gradient descent
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Gradient descent
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Stochastic gradient descent

Recall that our objective function has the form

ℓ(θ) =
1

n

n∑
i=1

L(θ, xi , yi )

Mini-batch stochastic gradient descent

randomly shuffle examples in the training set, divide them into k
mini-batches of data of size m
for each batch Ii (i=1, . . . , k), approximate the empirical risk by

ℓ̂(θ) =
1

m

∑
j∈Ii

L(θ, xj , yj)

and update θ
θ ← θ − ρ∇ℓ̂(θ)

Repeat until an approximate minimum is obtained or a maximum
numbers M epochs are done
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Stochastic gradient descent: teminology

Mini-batch stochastic gradient descent

randomly shuffle examples in the training set, divide them into k
mini-batches of data of size m
for each batch Ii (i=1, . . . , k), approximate the objective function by

ℓ̂(θ) =
1

m

∑
j∈Ii

L(θ, xj , yj)

and update θ
θ ← θ − ρ∇ℓ̂(θ)

Repeat until an approximate minimum is obtained or a maximum
numbers M epochs are done

Terminology:

m: batch-size
ρ: learning rate
M: number of epochs
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Stochastic gradient descent (SGD)

Lecture 5: Neural networks Mathematical techniques in data science 40 / 50



Stochastic gradient descent

Gradient descent converges to the local minimum, and the fluctuation
is small

SGD’s fluctuation is large, but enables jumping to new/better local
minima

Lecture 5: Neural networks Mathematical techniques in data science 41 / 50



Escaping local minima
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Automatic diffierentiation
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Stochastic gradient descent

The most computationally heavy part in the training of a neural net is
to compute

∂ℓ

∂θi ,j

Numerical differentiation is not realistic, and symbolic differentiation
is impossible
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Automatic differentiation

Assume that
y = f (g(h(x)))

Denote x = u0, h(u0) = u1, g(u1) = u2, f (u2) = u3 = y , then

dy

dui
=

dy

dui+1

dui+1

dui
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Back-propagation
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Back-propagation

Use chain rule to compute ∇ℓ(θ)

∂ℓ

∂b1
=

∂ℓ

∂p
(p) · ∂p

∂h2
(h2,W3, b3) ·

∂h2
∂h1

(h1,W2, b2) ·
∂h1
∂b1

(x ,W1, b1)
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Back-propagation

One forward pass to evaluate h1, h2, p, ℓ

One backward pass to compute ∇ℓ(θ)
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Feed-forward neural networks
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Back-propagation

Advantage: The cost to compute the partial derivatives with respect
to all parameters are just twice the cost of a forward evaluations

Drawback: The functions used to describe the network (activation
functions and loss functions) needs to belong to the class of functions
supported by the computational platform
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