Mathematical techniques in data science

Lecture 6: Deep learning with Keras

• Structure:

- Graphical representation
- Activation functions
- Loss functions
- Training:
 - Stochastic gradient descent
 - Back-propagation

B → B

• Data:

$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$$

• Model parameters:

$$\theta = (W_1, b_1, W_2, b_2, \ldots, W_L, b_L)$$

• Training: Find the best value of θ that fits the data

A B M A B M

э

Stochastic gradient descent: terminology

- Mini-batch stochastic gradient descent
 - randomly shuffle examples in the training set, divide them into k mini-batches of data of size m
 - for each batch I_i (i=1, ..., k), approximate the objective function by

$$\hat{\ell}(\theta) = \frac{1}{m} \sum_{j \in I_i} L(\theta, x_j, y_j)$$

and update θ

$$\theta \leftarrow \theta - \rho \nabla \hat{\ell}(\theta)$$

- Repeat until an approximate minimum is obtained or a maximum numbers *M* epochs are done
- Terminology:
 - m: batch-size
 - ρ : learning rate
 - M: number of epochs

- One forward pass to evaluate h_1, h_2, p, ℓ
- One backward pass to compute $\nabla \ell(\theta)$

э

< 47 ▶

sklearn.neural_network.MLPClassifier

class sklearn.neural_network.MLPClassifier(hidden_layer_sizes=(100,), activation='relu', *, solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10, max_fun=15000) [source]

Multi-layer Perceptron classifier.

This model optimizes the log-loss function using LBFGS or stochastic gradient descent.

New in version 0.18.

	Parameters:	hidden_layer_sizes : tuple, length = n_layers - 2, default=(100,) The ith element represents the number of neurons in the ith hidden layer. activation : {'identity', 'logistic', 'tanh', 'relu'}, default='relu' Activation function for the hidden layer.	
		 'identity', no-op activation, useful to implement linear bottleneck, returns f(x) 'logistic', the logistic sigmoid function, returns f(x) = 1 / (1 + exp(-x)). 'tanh', the hyperbolic tan function, returns f(x) = tanh(x). 'relu', the rectified linear unit function, returns f(x) = max(0, x) 	= x
Lec	ture 6: Deep learn	ing with Keras Mathematical techniques in data science	6

- High level API for deep learning
- More flexible to define network architecture than sklearn

- Define a network as a Sequential object
- Add layers to it one-by-one

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
model = Sequential()
model.add(Dense(50, activation='relu'))
model.add(Dense(50, activation='relu'))
model.add(Dense(10, activation='softmax'))
```

Define network architecture (2)

э

∃ ▶ ∢ ∃ ▶

Labels in Keras are usually encoded as one-hot vectors

æ

< 日 > < 同 > < 三 > < 三 >

Some intros to computer vision

æ

.∃ →

Image: A matched black

A field that enables computers and systems to derive meaningful information from digital images, videos and other visual inputs

- Image classification/object recognition
- Object detection
- Image segmentation
- Image generation

Image classification

Lecture 6: Deep learning with Keras

æ

イロト イボト イヨト イヨト

Image segmentation

æ

3

- 一一司

臣

Color image representation

- Use RGB color mode
- Represent a color by 3 values: R (Red) G (Green) B (Blue)
- There are other color modes

Image representation

- An image is an H × W × C matrix: H (height), W (width), C (depth or number of channels)
- Grayscale image: C = 1
- RGB image: C = 3

Demo: train an MLP using Keras

< □ > < 凸