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Supervised learning: standard setting

Given: a sequence of label data (x1, y1), (x2, y2), . . . , (xn, yn) sampled
(independently and identically) from an unknown distribution PX ,Y

a learning algorithm seeks a function h : X → Y, where X is the
input space and Y is the output space
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Supervised learning: standard setting

The function h is an element of some space of possible functions H,
usually called the hypothesis space

In order to measure how well a function fits the training data, a loss
function

L : Y × Y → R≥0

is defined
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Risk and empirical risk

With a pre-defined loss function, the “optimal hypothesis” is the
minimizer over H of the risk function

R(h) = E(X ,Y )∼P [L(Y , h(X ))]

Since P is unknown, the simplest approach is to approximate the risk
function by the empirical risk

Rn(h) =
1

n

n∑
i=1

L(yi , h(xi ))

The empirical risk minimizer (ERM): minimizer of the empirical risk
function (in this lecture, denoted by ĥn)

Let h∗ denotes a minimizer of the risk function
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Failure of ERM

We hope that
R(ĥn) ≈ R(h∗),

but in general, this might not be true if the hypothesis space H is too large
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Failure of ERM

We hope that
R(ĥn) ≈ R(h∗),

but in general, this might not be true if the hypothesis space H is too
large

Question: What does ”too large” mean?

We need to be able to quantify/control the difference between R(ĥn)
and R(h∗)
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Modes of estimations

Analysis
lim
n→∞

xn = x

Numerical analysis

∥xn − x∥ = O
(

1√
n

)
or ∥xn − x∥ ≤ C√

n

PAC (Probably Approximately Correct) learning

∥xn − x∥ ≤ C (δ)
1√
n

with probability at least 1− δ
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PAC learning

Definition

The probably approximately correct (PAC) learning model typically states
as follows: we say that ĥn is ϵ-accurate with probability 1− δ if

P
[
R(ĥn)− R(h∗) > ϵ

]
< δ.

In other words, we have R(ĥn)− R(h∗) ≤ ϵ with probability at least
(1− δ).
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Probability inequalities
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Markov inequality

Theorem (Markov inequality)

For any nonnegative random variable X and ϵ > 0,

P[X ≥ ϵ] ≤ E[X ]

ϵ
.
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Markov inequality

Theorem

For any random variable X , ϵ > 0 and t > 0

P[X ≥ ϵ] ≤ E[etX ]
etϵ

.
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Exponential moment of bounded random variables

Theorem

If random variable X has mean zero and is bounded in [a, b], then for any
s > 0,

E[etX ] ≤ exp

(
t2(b − a)2

8

)
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Hoeffding’s inequality

Theorem (Hoeffding’s inequality)

Let X1,X2, . . . ,Xn be i.i.d copy of a random variable X ∈ [a, b], and ϵ > 0,

P

[
X1 + X2 + . . .+ Xn

n
− E [X ] ≥ ϵ

]
≤ exp

(
− nϵ2

2(b − a)2

)
.

Corollary:

P

[∣∣∣∣X1 + X2 + . . .+ Xn

n
− E [X ]

∣∣∣∣ ≥ ϵ

]
≤ 2 exp

(
− nϵ2

2(b − a)2

)
.
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Generalization bound for finite hypothesis space and bounded loss
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Assumption

the loss function L is bounded, that is

0 ≤ L(y , y ′) ≤ c ∀y , y ′ ∈ Y

the hypothesis space is a finite set, that is

H = {h1, h2, . . . , hm}.
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Key ideas

For any h ∈ H and ϵ > 0 we have

P[|Rn(h)− R(h)| ≥ ϵ] ≤ 2 exp

(
−nϵ2

2c2

)
.

Using a union bound on the “failure probability” associated with each
hypothesis, we have

P[∃h ∈ H : |Rn(h)− R(h)| ≥ ϵ] ≤ 2|H| exp
(
−nϵ2

2c2

)
.
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Key ideas

Using a union bound on the “failure probability” associated with each
hypothesis, we have

P[∀h ∈ H : |Rn(h)− R(h)| < ϵ]

≥ 1− 2|H| exp
(
−nϵ2

2c2

)
.

Under this “good event”:

R(ĥn)− R(h∗)

= [R(ĥn)− Rn(ĥn)] + [Rn(ĥn)− Rn(h
∗)] + [Rn(h

∗)− R(h∗)]

≤ 2ϵ

Conclusion: ĥn is (2ϵ)-accurate with probability 1− δ, where

δ = 2|H| exp
(
−nϵ2

2c2

)
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PAC estimate for ERM

Theorem

For any δ > 0 and ϵ > 0, if

n ≥ 8c2

ϵ2
log

(
2|H|
δ

)
then ĥn is ϵ-accurate with probability at least 1− δ.
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PAC estimate for ERM

n =
8c2

ϵ2
log

(
2|H|
δ

)

Fix a level of confidence δ, the accuracy ϵ of the ERM is

O

(
1√
n

√
log

(
1

δ

)
+ log(|H|)

)

If we want ϵ → 0 as n → ∞:

log(|H|) ≪ n

The convergence rate will not be better than O(n−1/2)
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Generalization bound using covering number.

(PAC Learning) Mathematical techniques in data science 20 / 48



Covering numbers

Assumption: H is a metric space
with distance d defined on it.

For ϵ > 0, we denote by
N (ϵ,H, d) the covering number
of (H, d); that is, N (ϵ,H, d) is
the minimal number of balls of
radius ϵ needed to cover H.
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Covering numbers

Remark: If H is a bounded
k−dimensional manifold/algebraic
surface, then we now that

N (ϵ,H, d) = O
(
ϵ−k
)
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Generalization bound using covering number.

Assumption: H is a metric space with distance d defined on it.

For ϵ > 0, we denote by N (ϵ,H, d) the covering number of (H, d);
that is, N (ϵ,H, d) is the minimal number of balls of radius ϵ needed
to cover H.

Assumption: loss function L satisfies:

|L(h(x), y)− L(h′(x), y)| ≤ Cd(h, h′) ∀, x ∈ X ; y ∈ Y; h, h′ ∈ H
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Key ideas

If

n =
8c2

ϵ2
log

(
2|Hϵ|
δ

)
then the event

|Rn(h)− R(h)| ≤ ϵ, ∀h ∈ Hϵ

happens with probability at least 1− δ.

Under this event, consider any h ∈ H, then there exists h0 ∈ Hϵ such
that d(h, h0) ≤ ϵ.
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Key ideas

Since the loss function is Lipschitz

|Rn(h)− Rn(h0)| ≤ Cd(h, h0)

and
|R(h)− R(h0)| ≤ Cd(h, h0).

Conclusion:

|Rn(h)− R(h)| ≤ (2C + 1)ϵ ∀h ∈ H.
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Generalization bound using covering number.

Theorem

For all ϵ > 0, δ > 0, if

n ≥ c2

2ϵ2
log

(
2N (ϵ,H, d)

δ

)
then

|Rn(h)− R(h)| ≤ (2C + 1)ϵ ∀h ∈ H.

with probability at least 1− δ.
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Example: Polynomial covering number.

Assume that
N (ϵ,H, d) ≤ Kϵ−k

for some K > 0 and k ≥ 1.

ĥn is ϵ-accurate with probability at least 1− δ if

n =
c2(4C + 2)2

2ϵ2

(
log

(
2K

δ

)
+ k log

(
4C + 2

ϵ

))
Homework: Fix n and δ, derive an upper bound for ϵ.
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Remarks

If we want ϵ → 0 as n → ∞:

dimension(H) ≪ n

How do we get that?

Regularization:

Work for the case dimension(H) ≫ n
Stabilize an estimator → force it to live in a neighborhood of a
lower-dimensional surface

Model selection

Feature selection
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Other measures of learning dimension
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Vapnik–Chervonenkis dimension

The set of straight lines (as a binary classification model on points) in a
two-dimensional plane has VC dimension 3.
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Rademacher complexity

measures richness of a class of real-valued functions with respect to a
probability distribution

Given a sample S = (x1, x2, . . . , xn) and a class H of real-valued
functions defined on the input space X , the empirical Rademacher
complexity of H given S is defined as:

Rad(H) = Eσ

[
sup
f ∈H

1

m

m∑
i=1

σi f (xi )

]

where σ1, σ2, . . . , σm are independent random variables drawn from
the Rademacher distribution

P[σi = 1] = P[σi = −1] = 1/2
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Regularization techniques
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Regularization: stability + incorporate special knowledge

Regularization:

Is superior when the problem is ill-defined, e.g, for the case
dimension(H) ≫ n

Idea: We want a hypothesis that fits training data well, but also
satisfies some good properties

Stabilize an estimator → force it to live in a neighborhood of a
lower-dimensional surface
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Regularization techniques

Explicit:

Adding penalties into loss functions

Dropout

Implicit:

Design networks to capture invariance

Data augmentation

Use special optimizer

Early stopping
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Bias-variance decomposition

MSE (θ̂) = Var(θ̂) + (bias)2
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Stein’s phenomenon

Given i.i.d. X1, . . . ,Xn samples from Bernoulli(p), we wish to
estimate p

Usual estimate: (X1 + X2 + . . .Xn)/n

Biased estimate: (X1 + X2 + . . .Xn + 2)/(n + 4)

(PAC Learning) Mathematical techniques in data science 36 / 48



Stein’s phenomenon: Bernoulli

Given i.i.d. X1, . . . ,Xn samples from Nd(µ, Id) (d ≥ 3), we wish to
estimate µ

The accuracy of an estimator is measured by the risk function

MSE (µ̂) = E [∥µ̂− µ∥2]

The standard estimate is

X̄ =
X1 + . . .+ Xn

n

which minimizes

min
c

n∑
i=1

∥Xi − c∥2
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Stein’s phenomenon

The standard estimate is

X̄ =
X1 + . . .+ Xn

n

which minimizes

min
c

n∑
i=1

∥Xi − c∥2

James-Stein’s estimator

µJS =

(
1− d − 2

n∥X̄∥2

)
X̄

is a strictly better estimator than the sample mean X̄
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Regularization: LR
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Regularization: SVM
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Regularization: MLP
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Regularization: MLP
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Dropout
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Design networks to capture invariance
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Predictions with point clouds
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Design networks to capture invariance
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Data augmentation
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Early stopping
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