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Mathematical techniques in data sciences

A short introduction to statistical learning theory
Tree-based methods — boosting and bootstrapping
SVM - the kernel trick

Linear regression — regularization and feature selection

(Lecture 10: Boosting) Mathematical techniques in data science



Decision trees
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Tree-based methods

@ Partition the feature space into a set of rectangles
e Fit a simple model (e.g. a constant) in each rectangle

@ Conceptually simple yet powerful
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Izenman, 2013, Figure 9.1.
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Tree-based methods

@ Advantages:
e Often mimics human decision-making process (e.g. doctor examining
patient).
o Very easy to explain and interpret.
e Can handle both regression and classification problems.
@ Disadvantage: Basic implementation is generally not competitive
compared to other methods.

@ However, by aggregating many decision trees and using other
variants, one can improve the performance significantly.

@ Such techniques may lead to state-of-the-art models. However, in
doing so, one loses the easy interpretability of decision trees.
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Decision trees

To simplify, we will only consider binary decision trees.
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ESL, Figure 9.2.

Top Left: Not binary. Top Right: binary.
Bottom Left: Tree corresponding to Top Right partition. Bottom Right: Prediction surface.
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How to grow a decision tree?

Regression tree:

o Data: y € R*, X € R™"*P,

e Each observation: (y;,z;) € RP*, i=1,... n.

Suppose we have a partition of R? into M regions Ry, ..., Ry,.

We predict the response using a constant on each R;:
m
fl@) =i luocr
i=1

In order to minimize Y, (y; — f(z;))?, one needs to choose:
¢ =ave(y; : x; € Ry).

How do we determine the regions R;, i.e., how do we “grow" the
tree?
We need to decide:

@ Which variable to split.
© Where to split that variable.
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How to grow a decision tree?

e Finding a (globally) optimal tree is generally computationally
infeasible.
@ We use a greedy algorithm.
Consider a splitting variable j € {1,...,p} and splitting point
seR.
Define the two half-planes:

Ri(j,s) ={z e RP : z; < s}, Ry(j,s) :={x € RP : z; > s}.

We choose j, s to minimize

. . 2 . 2
min | min , — ¢ min ;i —¢C
el b Z ('yz 1) + R Z ('yz 2)
z;€R1(j,s) z;€R2(j,s)
@ The determination of the splitting point s can be done very
quickly.

@ Hence, determining the best pair (j, s) is feasible.

Repeat the same process to each block.
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Stoping and pruning

o Generally, the process is stopped for a given region when there
are less than 5 observations in that region.

Problem with previous methodology:

o Likely to overfit the data.

@ Can lead to poor prediction error.

Pruning the tree. Strategy: Grow a large tree (overfits), and the
prune it (better).

@ Weakest link pruning:

(a-k.a cost complexity pruning)

Let T' C Ty be a subtree of Ty with |T'|
terminal nodes. For a: > 0, define:

|T|
=Y > Wi—ir,) +aT].
m=14:x;ERm

Pick a subtree minimizing C,(T).
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Stoping and pruning

Pick a subtree T C Tp minimizing:

T
Co(T):=> > @i—ir,)*+a-|T|
m=1%4:2,ERm
(Here, g, =average response for observations in Ry,.)
@ « is a tuning parameter.
o Trade-off between fit of the model, and tree complexity.
o Choose « using cross-validation.

Once a has been chosen by CV, use whole dataset to find the tree
corresponding to that value.
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Classification trees

@ So far, we discussed regression trees (continuous output).

@ We can easily modify the methodology to predict a categorical
output.

o We only need to modify our splitting and pruning criteria.
For continuous variables, we picked a constant in each box R; to
minimize the sum of squares in that region:

min (y; — )2

R
¢ T, €R;
As a result, we choose:
. 1
G =
N, E Yk,
TLER;

where N; denotes the number of observations in R;.
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Classification trees

Similarly, when the output is categorical, we can count the
proportion of class k observations in node i:

. 1
Dik = N Z 1yl€R¢-
1
T1€ER;

We then classify the observations in node ¢ using a majority vote:

k(i) := argmax pi.
k

Different measures are commonly used to determine how good a
given partition is (and how to split a given partition):
@ Misclassification error: N% > zer; Luk() = 1 — Dik(y)-
L. K . A K
@ Gini index: >3- Pik(l — Pix) =1 =D 1y Do
(Probability that a randomly chosen point is incorrectly classified.)
K ~ N
© Entropy: — ) 1, Dik log Dix-
(Measure of “disorder” in a given category.)
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Let us focus on the top box.

@ (Gini index) Error from classifying according to proportions:

P(error) = P(error|green)P(green) + P(error|blue) P(blue) + P(error|red)P(red)
=3/7-4)T+6/7-1/7+5/7-2/7=4/1.

o (Entropy) The probability distribution associated to the top box:

(4/7,2/7,1/7).

Entropy = —(4/7) logy(4/7) — (2/7) logy(2/7) — (1/7) logy(1/7) =~ 1.38.

Best case possible: (1,0,0), (0, 1,0),(0,0,1). Entropy = 0.

Worst case possible (1/3,1/3,1/3). Entropy = 1.58.
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@ Build a decision tree classifer on the Iris dataset

@ Question: Should we use Gini index vs Entropy for the splitting
criteria?
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Bootstrapping, bagging, random forests
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Sampling with replacement

with replacement

prob =1/6

beel |l [

prab=1/6

soo
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Bootstrap

Bootstrapping: General statistical method that relies on
resampling data with replacement.

Idea: Given data (yi,z;), i = 1,...,n, construct bootstrap samples
by sampling n of the observations with replacement (i.e., allow
repetitions):

Sample 1 Sample 2 Sample 3
(yil s wil) (y:h ) mjl) (yk1 s mh)
(yiza xiz) (yjzawjz) (ykza mkz)
(ylnﬁ x'ﬂn) (y]n 1) "I"]n) (ykn7 xkn)
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Bagging

Bagging:(bootstrap aggregation) Suppose we have a model

y ~ f(z) for data (y;, z;) € RPHL,
© Construct B € N bootstrap samples.
© Train the method on the b-th bootstrap sample to get f**(z).
© Compute the average of the estimators:

fbag Z f*b

e Bagging is often used with regression trees.
@ Can improve estimators significantly.
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Bagging

Note: Each bootstrap tree will typically involve different features
than the original, and might have a different number of terminal
nodes.

The bagged estimate is the average prediction at x from
these B trees.

For classification: Use a majority vote from the B trees.
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Random forests

@ Idea of bagging: average many noisy but approximately
unbiased models, and hence reduce the variance.

@ However, the bootstrap trees are generally correlated.

@ Random forests improve the variance reduction of bagging by
reducing the correlation between the trees.

@ Achieved in the tree-growing process through random selection
of the input variables.

@ Popular method.
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Random forests: Each time a split in a tree is considered, a
random selection of m predictors is chosen as split candidates from
the full set of p predictors.

o Typical value for m is ,/p.

e We construct T4, ..., Ty trees using that method on bootstrap
samples. The random forest (regression) predictor is

fB@) = 5 3 T@).
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accurate and robust
difficult to interpret compared to a decision tree
does not suffer from the overfitting problem

usually have built-in relative feature importance
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Disadvantages

@ slow in generating predictions because it has multiple decision trees

o difficult to interpret compared to a decision tree
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Boosting

(Lecture 10: Boosting) Mathematical techniques in data science



Convexification of the hypothesis space
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Moving out of the hypothesis space

He) =3 pehe(x)

H =sign | 0.42 + (1,65 + 0,92
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Adaboost

Algorithm 10.1 AdaBoost.M1.

1. Initialize the observation weights w; = 1/N., i =1,2,....N.
2. Form=1to M:
(a) Fit a classifier G,,(x) to the training data using weights w;.
(b) Compute
N ¢ Y
Z!' 1 “'.l-'!T'-_.U!' # C;‘J?!I-."!I!. ))
- .
¥V w

£ ag

orT,,, =

(c) Compute a,, =log((1 — err,,)/erry, ).
(d) Set w; — w; - explom - Iy # Gm(zi))], 1=1,2,...,N.

s

R e . M P
3. Output G(x) = sign ["s_‘ | O G ()
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Adaboost
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Adaboost

(Lecture 10: Boosting) Mathematical techniques in data science



Gradient boosting: history

» Invent Adaboost, the first successful boosting algorithm
[Freund et al., 1996, Freund and Schapire, 1997]

» Formulate Adaboost as gradient descent with a special loss
function[Breiman et al., 1998, Breiman, 1999]

» Generalize Adaboost to Gradient Boosting in order to handle
a variety of loss functions
[Friedman et al., 2000, Friedman, 2001]
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Gradient boosting
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Gradient descent

Gradient Descent
Minimize a function by moving in the opposite direction of the
gradient.

oJ

9;‘ = 9;‘ — ,()TH“

Figure: Gradient Descent. Source:
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Gradient boosting

\ MSE Loss Function

5()/-170)2 >
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Gradient boosting

Boosting: Recursively fit trees to residuals. (Compensate the
shortcoming of previous model.)
Input: (y;,z;) € RPYL i =1,... n. Initialize f(z) =0, 7; = .
Forb=1,....B:

O Fit a tree estimator f? with d splits to the training data.

@ Update the estimator using:

fx) < flz) + A~ fo(x).
© Update the residuals:
ry < g — A- fb(;’i’i),
Output: Boosted tree:

B
fla)y=>"Afb(x).
i=1
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Gradient boosting

Algorithm 10.3 Gradient Tree Boosting Algorithm.

1. Initialize fo(r) = arg min, Z;l L{yi, ).
2. Form =11to M:

(a) Fori=1,2 ... ] N compute

oo {di-(yau,f{:m})}
i1 .‘_)f[_l‘ Jr_rr 1 -

(b) Fit a regression tree to the targets r;,, giving terminal regions
Rim, 7=1,2,..... T

(¢) For j =1,2,...,J, compute

r:rm_alomm E Ly, frn—1(z5) +77) -
! i ERym

(d) Update fm(z) = frm—1(x) + 3 ;5 vimd(z € Rjm).
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Gradient boosting

sklearn.ensemble : Ensemble Methods

The sklearn.ensemble Module includes ensemble-based methods for classification, regression and anomaly detecti

User guide: See the Ensemble methods section for further details.
ensemble.AdaBoostClassifier ([...]) An AdaBoost classifier.
ensemble.AdaBoostRegressor ([Dase_estimator, ...]) An AdaBoost regressor.
ensemble.BaggingClassifier ([Dase_estimator, ...]) A Bagging classifier.
ensemble.BaggingRegressor ([Dase_estimator, ...]) A Bagging regressor.
ensemble.ExtraTreesClassifier ([...]) An exira-trees classifier.
ensemble.ExtraTreesRegressor ([N_estimators, ...]) An extra-trees regressor.
ensemble.GradientBoostingClassifier ([l0SS, ...])  Gradient Boosting for classification.

ensemble.GradientBoostingRegressor ([lOSS, ...]) Gradient Boosting for regression.
ensemble.IsolationForest ([N_estimators, ...]) Isolation Forest Algorithm
ensemble.RandomForestClassifier ([...]) A random forest classifier.
ensemble.RandomForestRegressor ([...]) A random forest regressor.
ensemble.RandomTreesEmbedding ([...]) An ensemble of totally random trees.
ensemble.VotingClassifier (€Stimators], ...]) Soft Voting/Majority Rule classifier for unfitted estimators.
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Gradient boosting

dmic
XGBoost eXtreme Gradient Boosting

build | passing | %) build | passing license = Apache 2.0 0.82.1 pypi package | 0.82

Community | Documentation | Resources | Contributors | Release Notes

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It
implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boost
(also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on m
distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

License

© Contributors, 2016. Licensed under an Apache-2 license.
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