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Unsupervised learning
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Supervised and unsupervised learning

Supervised learning problems

Labelled data (X ,Y ) with joint density P(X ,Y )
We are mainly interested in the conditional density P(Y |X ).

Unsupervised learning problems

Data X is not labelled and has density P(X )
We want to infer properties of P(X )
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Clustering

Unsupervised problem

Want to label points according to a measure of their similarity
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Clustering
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K-means clustering
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K-means clustering
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Lloyd’s algorithm

Example, Dense
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https://upload.wikimedia.org/wikipedia/commons/e/ea/K-means_convergence.gif
https://datasciencelab.files.wordpress.com/2013/12/p_n2000_k15_.gif


Convergence of Lloyd’s algorithm

Local mean
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https://datasciencelab.files.wordpress.com/2013/12/p_n100_k9_g.gif


Lloyd’s algorithm: initiation step

There is no guarantee that Lloyds’ algorithm will find the global
optimum

As a result, we use different starting points

Common initiation schemes:

The Forgy method: Pick K observations at random and use these as
the initial means
Random partition: Randomly assign a cluster to each observation and
compute the mean of each cluster
kmeans++ (default in sklearn)
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kmeans++ initiation

Intuition: spreading out the k initial cluster centers is a good thing

Choose one center uniformly at random from among the data points.

For each data point x , compute D(x), the distance between x and
the nearest center that has already been chosen.

Choose one new data point at random as a new center, using a
weighted probability distribution where a point x is chosen with
probability proportional to D(x)2

Repeat Steps 2 and 3 until k centers have been chose
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Choosing k

Elbow method

Cross-validation

Average silhouette method
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Elbow method
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Silhouette method

a measure of how similar an object is to its own cluster (cohesion)
compared to other clusters (separation)

ranges from [−1, 1]

The Silhouette coefficient is defined for each sample and is composed
of two scores:

a: The mean distance between a sample and all other points in the
same class.
b: The mean distance between a sample and all other points in the
next nearest cluster

The Silhouette coefficient (sklearn.metrics.silhouette score) for a
single sample is then given as:

s =
b − a

max(a, b)
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Issues with k-means

k-means is limited to linear cluster boundaries

Solution: adding non-linearities to the model
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Kernel k-means
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Kernel k-means = kernel trick + k-means

Ideas:

maps the data to a high-dimensional space (called feature space) by a
non-linear function ϕ to separate the clusters linearly
Using this high-dimensional representation to run k-means
Project the data back to the original space to identify the clusters

Note: the kernel trick works best if we don’t have to construct ϕ(x)
explicitly, but can compute

K (x , y) = ⟨ϕ(x), ϕ(y)⟩

For k-means, we need to compute

∥ϕ(xi )−mj∥2
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Kernels
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Kernel k-means = kernel trick + k-means

Note that

∥ϕ(xi )−mj∥2 = ⟨ϕ(xi )−mj , ϕ(xi )−mj⟩
= ⟨ϕ(xi ), ϕ(xi )⟩ − 2⟨ϕ(xi ),mj⟩+ ⟨mj ,mj⟩

Given a cluster Cj , its center (on feature space) is

mj =
1

|Cj |
∑
b∈Cj

ϕ(b)

Thus

⟨ϕ(xi ),mj⟩ =
1

|Cj |
∑
b∈Cj

⟨ϕ(xi ), ϕ(b)⟩ =
1

|Cj |
∑
b∈Cj

K (xi , b)
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Kernel k-means = kernel trick + k-means

Note that

∥ϕ(xi )−mj∥2 = ⟨ϕ(xi )−mj , ϕ(xi )−mj⟩
= ⟨ϕ(xi ), ϕ(xi )⟩ − 2⟨ϕ(xi ),mj⟩+ ⟨mj ,mj⟩

Given a cluster Cj , its center (on feature space) is

mj =
1

|Cj |
∑
b∈Cj

ϕ(b)

Thus

⟨mj ,mj⟩ =
1

|Cj |2
∑

b,c∈Cj

K (b, c)

(Lecture 12: Clustering using kernel k-means) Mathematical techniques in data science 20 / 21



Kernel k-means
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