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Supervised and unsupervised learning

@ Supervised learning problems

o Labelled data (X, Y) with joint density P(X,Y)

e We are mainly interested in the conditional density P(Y'|X).
@ Unsupervised learning problems

e Data X is not labelled and has density P(X)
e We want to infer properties of P(X)
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Clustering

@ Unsupervised problem
@ Want to label points according to a measure of their similarity
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Clustering

We try to partition observations into “clusters” such that:
@ Intra-cluster distance is minimized.
@ Inter-cluster distance is maximized.

Inter-cluster
distance

Intra-cluster
distance -
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K-means clustering

The K-means algorithm is a popular algorithm to cluster a set of
points in RP.

e We are given n observations x1,x9,...,x, € RP.

@ We are given a number of clusters K.

o We want a partition S = {S},..., Sk} of {x1,...,x,} such

that
K
S= arg;ninz > Ny — il

i=1 Ijesi

where p; = |§¢| ijesi x; is the mean of the points in S; (the

“center” of S;).
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K-means clustering

o We want a partition S = {S1,..., Sk} of {z1,...,z,} such

that
K
S = argéninz D Ml — pall?,

=1 .’EjGSi
where p; = ‘SL‘ >_s,es; T is the mean of the points in S; (the
“center” of S;).
@ The above problem is NP hard.

e Efficient approximation algorithms exist (converge to a local
minimum though).
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algorithm

Lloyds's algorithm for K-means clustering

@ Denote by C(i) the cluster assigned to x;.
o Lloyds's algorithm provides a heuristic method for optimizing

the K-means objective function.
Start with a “cluster centers” assignment mgo)’ e 7m(KO). Set

t := 0. Repeat:
© Assign each point z; to the cluster whose mean is closest to

.17]‘2
S =y flay =l |2 < Ny =m0 2 R =1, K},

@ Compute the average mEH_l) of the observations in cluster i:

mz(-tﬂ) = ! Z Zj.

Example, Dense
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https://upload.wikimedia.org/wikipedia/commons/e/ea/K-means_convergence.gif
https://datasciencelab.files.wordpress.com/2013/12/p_n2000_k15_.gif

Convergence of Lloyd's algorithm

Note that Lloyds’s algorithm uses a greedy approach to sequentially

minimize:
K

Sl —mal”

1=1 T ESi

@ Both steps of the algorithm decrease the objective.
@ Thus, Lloyds's algorithm converges a local minimum of the
objective function.
There is no guarantee that Lloyds’ algorithm will find the global
optimum.

Local mean

(Lecture 12: Clustering using kernel k-means Mathematical techniques in data science


https://datasciencelab.files.wordpress.com/2013/12/p_n100_k9_g.gif

Lloyd’s algorithm: initiation step

@ There is no guarantee that Lloyds' algorithm will find the global
optimum
@ As a result, we use different starting points
@ Common initiation schemes:
e The Forgy method: Pick K observations at random and use these as
the initial means

e Random partition: Randomly assign a cluster to each observation and
compute the mean of each cluster
o kmeans++ (default in sklearn)
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kmeans+- initiation

Intuition: spreading out the k initial cluster centers is a good thing
@ Choose one center uniformly at random from among the data points.

e For each data point x, compute D(x), the distance between x and
the nearest center that has already been chosen.

@ Choose one new data point at random as a new center, using a
weighted probability distribution where a point x is chosen with
probability proportional to D(x)?

@ Repeat Steps 2 and 3 until k centers have been chose
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Choosing k

o Elbow method
@ Cross-validation

@ Average silhouette method
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Elbow method
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Elbow Point Example
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Silhouette method

@ a measure of how similar an object is to its own cluster (cohesion)
compared to other clusters (separation)
@ ranges from [—1,1]
@ The Silhouette coefficient is defined for each sample and is composed
of two scores:
e a: The mean distance between a sample and all other points in the
same class.
e b: The mean distance between a sample and all other points in the
next nearest cluster
@ The Silhouette coefficient (sklearn.metrics.silhouette_score) for a
single sample is then given as:

b—a
max(a, b)
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Issues with k-means

@ k-means is limited to linear cluster boundaries
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@ Solution: adding non-linearities to the model
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Kernel k-means
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Kernel k-means = kernel trick + k-means

@ ldeas:

e maps the data to a high-dimensional space (called feature space) by a
non-linear function ¢ to separate the clusters linearly

e Using this high-dimensional representation to run k-means

e Project the data back to the original space to identify the clusters

@ Note: the kernel trick works best if we don't have to construct ¢(x)
explicitly, but can compute

K(x,y) = (#(x), é(y))

@ For k-means, we need to compute

lo(xi) — m|?
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Kernels

Polynomial Kernel | x(a,b) = (a b+ ¢)*
Gaussian Kernel k(a,b) = exp(—||a — b||*/207)
Sigmoid Kernel r(a,b) = tanh(c(a - b) + 0)
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Kernel k-means = kernel trick + k-means

Note that

lo(xi) = mi|? = (¢(xi) — my, é(xi) — my)
= (¢(xi), ¢(xi)) — 2(d(xi), m;) + (mj, m;)

Given a cluster C;, its center (on feature space) is

) = |C1| 3 o0
Thus
G00) m) = = 3 (0(x), o)) = = 3 K(xi,b)
Gl beC; Gl beC;
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Kernel k-means = kernel trick + k-means

Note that

Thus
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Kernel k-means

Input: K: kernel k: number of clusters

Output: C,....,C): partitioning of the points
1. Initialize the k clusters: C§O), v C,(CO).

2. Set t = 0.

3. For each point a, find its new cluster index as

j*(a) = argmin, || ¢(a) — my|*, using (2).
4. Compute the updated clusters as
t+1 Lk -
¢ ={a: j'(a)=j}

5. If not converged, set t = t + 1 and go to Step 3;
Otherwise, stop.
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