Mathematical techniques in data science

Lecture 13: Shrinkage methods for linear regression

(Lecture 13: Shrinkage methods for linear re Mathematical techniques in data science



Mathematical techniques in data sciences

A short introduction to statistical learning theory
Tree-based methods — boosting and bootstrapping
SVM - the kernel trick

Linear regression — regularization and feature selection
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The story so far...
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Failure of ERM

We hope that
R(hn) = R(h"),

but in general, this is not be true if the hypothesis space H is too large
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Underfiting/Overfitting

s * o — —p>

5 high bias low bias

E = low variance high variance

- Test error
L4

7]

(]

Training error

< model
underfit overfit complexity
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Regularization

If we want to learn well:
dimension(H) < n

How do we get that?
@ Model selection
@ Feature selection

@ Regularization
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Regularization techniques

Explicit:
@ Adding penalties into loss functions
@ Dropout
Implicit:
@ Design networks to capture invariance
o Data augmentation
@ Use special optimizer
°

Early stopping
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Linear regression

Linear model

y =800 4 gMx® 4 g@x(2) 1 gl x4 ¢

@ p: number of variables (X € RP)

@ n: number of observations
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Classical setting

Linear model

y = 8O0 4 gMx® 4 g@) x4 P x(p)

@ n>> p (n much larger than p). With enough observations, we hope
to be able to build a good model

@ even if the true relationship between the variables is not linear, we
can include transformations of variables

X)) — [x(MW2 x(P+2) = x(1) xG)

P

@ adding transformed variables can increase p significantly
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Trade-off: complexity vs. interpretability

Linear model

y = g x® 4 g@x@ 4 g x(P) 4 ¢

@ Higher values of p lead to more complex model — increases
prediction power/accuracy

@ Higher values of p make it more difficult to interpret the model: It is
often the case that some or many of the variables regression model
are in fact not associated with the response
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Moderns settings

Linear model

y =800 4 gMx® 4 g@x(2) 1 gl xP) 4 ¢

@ it is often the case that n < p
@ requires supplementary assumptions (e.g. sparsity)
@ can still build good models with very few observations.
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Linear regression by least squares
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o Y eR™I X eRM(PFD)

7 1

Y = 2 X=1... xO x@ = x(P)
1
Yn

where x(1), x(2) . x(P) € R"™%1 are the observations of
XU . x@ o x0),

@ We want

y = 80 4 gMx® 4 g x() 1 P x(P)
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e We want
y =800 4 gMx®) 4 g@x@ 4  gle) x(e)

@ Equivalent to

(Lecture 13: Shrinkage methods for linear re Mathematical techniques in data science



Least squares

Y = X8

@ In general, the system has no solution (n > p ) or infinitely many
solutions (n < p)

@ The most popular estimation method is least squares, in which we
pick the coefficients to minimize the residual sum of squares

n

RSS(8) =Y (vi — f(xi))?

i=1
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Least squares

@ Minimize the residual sum of squares

n

RSS(B) = (yi — F(x:))?

i=1

o Or alternatively,
B =min|lY — X5l
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Least squares

@ Minimize the residual sum of squares

RSS(B) =Y (vi — f(x))?
i=1
- 2
- Z (y,- -89~ B(I)X,'(l) - 5(2)x,-(2) - B(p)x,.(p)>
i=1

@ Taking derivative

ORSS

550 = 2o 201 = xo) = 2Ty - x5)

i=1
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Least squares

@ Set derivatives to zero
XT(Y -XB)=0

e If XT X is invertible
f=XTX)"tXTy

@ Predicted values

Y/ - XtestB - Xtest(XT Xtrain)ilx—r Ytrain

train train
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The coefficient of determination

@ The coefficient of determination, called “R squared” and denoted by
R2—1_ > i (i — i)
i (i —y)?
where y is the average of yi1,..., ¥,

@ Often used to measure the quality of a linear model
e A model with a R? close to 1 fit the data well.
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The coefficient of determination

A A

X X

'

In some sense, the R? measures how much better is the prediction
compared to a constant prediction
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The adjusted coefficient of multiple determination

o It is desirable to adjust R? to take account of the fact that its value
may be quite high just because many predictors were used relative to
the amount of data

@ The adjusted coefficient of multiple determination

2 ot i1 (Vi = 90
R2=1- Pl —
i1 2ic1 (Vi — )

where ¥ is the average of y1,...,y,
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sklearn.linear_model.LinearRegression

b
>3
>3
3>
b
>
>3
1.8

=

import numpy as np

from sklearn.linear_model import LinearRegression
X = np.array([[1, 1], [1, 21, [2, 21, [2, 311D
#y=1*xo+2*x1+3

y = np.dot(X, np.array([1, 213) + 3

reg = LinearRegression().fit(X, v)

reg.score(X, v)

reg.coef_

array([1., 2.])

>

reg.intercept_

3.00820. ..

e

reg.predict{np.array([[3, 511D

array([16.7)
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sklearn.preprocessing.PolynomialFeatures

>>> X = np.arange(e).reshape(3, 2)
>>> X

array([[@, 1],
[2

[4, 511
>>> poly = PolynomialFeatures(z)
>>> poly.fit_transform(X)

array([[ 1., ©., 1., @., 8., 1.1,
[1., 2., 3., 4., 6., 9.1,
[ 1., 4., 5., 16., 25.711)
>»> poly = PolynomialFeaturestlnteract10n_only=1ruej

s=>> poly.fit_transform(X)

array([[ 1., @., 1., @.],
1., 2., 3., 6.],

1., 4., 5., 28.11)

/A
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@ Is at least one of the predictors X1, Xa,. .., X, useful in predicting the
response?

@ Do all the predictors help to explain Y, or is only a subset of the
predictors useful?
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Subset selection
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Trade-off: complexity vs. interpretability

Linear model

y = g x® 4 g x@ 4 g x(P) 4 ¢

@ Higher values of p lead to more complex model — increases
prediction power/accuracy

@ Higher values of p make it more difficult to interpret the model

@ Ideally, we would like to try out a lot of different models, each
containing a different subset of the predictors, then select the best
model

@ Problem: there are 2P models that contain subsets of p variables
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Best subset selection

Go4 07T Ba07

da407

Residual Sum of Squares

20407
|

| | T
2 4 B B 10
Number of Prediciors
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Forward stepwise selection

Algorithm 6.2 Forward stepwise selection

1. Let Mj denote the null model, which contains no predictors.
2. Fork=0,...,p—1:

(a) Consider all p — k models that augment the predictors in M
with one additional predictor.

(b) Choose the best among these p — k models, and call it Mg+,
Here best is defined as having smallest RSS or highest R2.

3. Select a single best model from among My,..., M, using cross-
validated prediction error, C, (AIC), BIC, or adjusted R
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Backward stepwise selection

Algorithm 6.3 Backward stepwise selection
1. Let M, denote the full model, which contains all p predictors.

2. Fork=p,p-1,...,1:
(a) Consider all £ models that contain all but one of the predictors
in Mg, for a total of k — 1 predictors.
(b) Choose the best among these k models, and call it Mj._;. Here
best is defined as having smallest RSS or highest R

3. Select a single best model from among My,..., M, using cross-
validated prediction error, C, (AIC), BIC, or adjusted R?.
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Hybrid approach

@ Hybrid versions of forward and backward stepwise selection are
available
@ variables are added to the model sequentially

o after adding each new variable, the method may also remove any
variables that no longer provide an improvement in the model fit

(Lecture 13: Shrinkage methods for linear re Mathematical techniques in data science



Adjusted training errors

e Adjusted R?
e Mallow’s C,
Cp = %(RSS + 2d5?)
where 62 is an estimate of the variance of the error, d is the number
of predictors
@ AIC (Akaike information criterion)

AIC:i

= (RSS + 2d5?)

e BIC (Bayesian information criterion)

1 A2
BIC = —(RSS + log(n)5?)
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sklearn does not support subset selection

sklearn.feature_selection.RFE

class sklearn.feature_selection. RFE (estimator, n_features_to_select=None, step=1, verbose=0) [source]

Feature ranking with recursive feature elimination.

Given an external estimator that assigns weights to features (e.g., the coefficients of a linear model), the goal of re-
cursive feature elimination (RFE) is to select features by recursively considering smaller and smaller sets of fea-
tures. First, the estimator is trained on the initial set of features and the importance of each feature is obtained either
through a coef_ attribute or through a feature_importances_ aftribute. Then, the least important features are
pruned from current set of features. That procedure is recursively repeated on the pruned set until the desired num-
ber of features to select is eventually reached.
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Shrinkage methods
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Y e R™1, X e R"*(PH1)

7 /A I RO
Y = 2 X=1... xO x@ = x(p)

Yn
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Linear model: settings

@ Linear model
y =80 4 gMx@) 4 g@x(2) 4 gl xe) 4 ¢

@ Equivalent to

vy_xs - |

@ Least squares regression

ﬂsngW—xm%

(Lecture 13: Shrinkage methods for linear re Mathematical techniques in data science



¢y regularization

@ /gy regularization

P
B = min 1Y = XBII5+ A 1404
i=1
where A\ > 0 is a parameter
@ pay a fixed price A for including a given variable into the model

@ variables that do not significantly contribute to reducing the error are
excluded from the model (i.e., 8; = 0)

e problem: difficult to solve (combinatorial optimization). Cannot be
solved efficiently for a large number of variables.
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5 (Tikhonov) regularization

@ Ridge regression/ Tikhonov regularization

BRIDGE _ mlnHY XB|]2+)\Z[,B(J)]2
j=1

where A > 0 is a parameter
shrinks the coefficients by imposing a penalty on their size
penalty is a smooth function.

easy to solve (solution can be written in closed form)

can be used to regularize a rank deficient problem (n < p)

(Lecture 13: Shrinkage methods for linear re Mathematical techniques in data science



5 (Tikhonov) regularization

o (IY — X8l + AlIsI?)

_ T _
o = 2XT(Y — XB3) + 2)\8

@ The critical point satisfies
(XTX+ A =XTY

o Note: (XTX 4 Al) is positive definite, and thus invertible

@ Thus
BRIDGE — (xTx 4+ )\I)_leY
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5 (Tikhonov) regularization

BRIDGE _ (XTX+ )\l)_leY

@ When X > 0, the estimator is defined even when n < p

@ When A =0 and n > p, we recover the usual least squares solution
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The Lasso
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Lasso

@ The Lasso (Least Absolute Shrinkage and Selection Operator)

1%
plasso — min ¥ - XBI5+ XY 189

j=1
@ As with ridge regression, the lasso shrinks the coefficient estimates
towards zero

@ However, the ¢ penalty has the effect of forcing some of the
coefficient estimates to be exactly equal to zero when A is sufficiently
large

@ the lasso performs variable selection — models are easier to interpret
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Lasso: alternative form

Alternative form of lasso (using the Lagrangian and min-max argument)

min [Y = X313

p
subject to Z 189 <'s
j=1
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Lasso: alternative form

By

By

FIGURE 68.7. Confours of the error and constraint funclions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-

gions, |51| + |532| < & and B3 + 8% < s, while the red ellipses are the contours of
the RSS.
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Lasso

@ The Lasso: »
Blasso —minllY = X 2 + A )
in|[Y = XBI3+ 2 |5V
j=1
@ More “global” approach to selecting variables compared to previously
discussed greedy approaches
o Can be seen as a convex relaxation of the 3° problem

@ No closed form solution, but can solved efficiently using convex
optimization methods.

@ Performs well in practice

@ Very popular. Active area of research
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Other shrinkage methods

@ /4 regularization (g > 0):

P
B = min Y - XB[I5+ XY [8Y]

j=1

4 qg=2 g=1 qg=0.5 q=0.1

A
l

FIGURE 3.12. Contours of constant value of Z;— |8;]7 for given values of q.
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Other shrinkage methods

@ Elastic net

P
AD_alBVP + (1 - a) 59
j=1

q=1.2 a = 0.2
| /T\
| \V
Ly Elastic Met

FIGURE 3.13. Contours of constant value of Z; B;1% for g = 1.2 {left plot),
and the elastic-net penalty 3 (a7 +(1—a)|8;|) for o = 0.2 (right plot). Although

visually very similar, the elastic-net has sharp (non-differentiable) corners, while
the g = 1.2 penally does not.
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Lasso: alternative form

Alternative form of lasso (using the Lagrangian and min-max argument)

min [Y = X313

p
subject to Z 189 <'s
j=1
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Regularization

@ /gy regularization
. P
B = min 1Y = XBII5+ A 1404
i=1
@ Ridge regression/Tikhonov regularization
~ P .
BRIDGE — min |IY — X33 + )\Z [3V)?
3 =
@ Lasso

1%
plasso — min ¥ - XI5+ 2D 18V

j=1
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Choosing parameters: cross-validation

@ /g, ridge, lasso have regularization parameters A
@ We obtain a family of estimators as we vary the parameter(s)
@ optimal parameters needs to be chosen in a principled way

@ cross-validation is a popular approach for rigorously choosing
parameters.
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Lasso: model selection consistency
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Lasso: alternative form

Alternative form of lasso (using the Lagrangian and min-max argument)

min [Y = X313

p
subject to Z 189 <'s
j=1
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Lasso: alternative form

By

By

FIGURE 68.7. Confours of the error and constraint funclions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-

gions, |51| + |532| < & and B3 + 8% < s, while the red ellipses are the contours of
the RSS.
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When the lasso fails
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When the lasso fails

2.0

1.5~

1.0

0.5 A

0.0 A

—0.5 1

-1.0 1

-1.5 1
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Model selection consistency lasso

@ Note: Model consistency of lasso

@ Further readings:
e Zhao and Yu (2006)
o Wainright (2009)
o Sparsity, the lasso, and friends (Ryan Tibshirani)
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o We start with the simple linear regression problem
y = sXM 4 5@ XA L e e~ N(0,0?)

@ Sparsity: assume that the data is generated using the “true” vector of
parameters 5* = (5*(1),0).

o We assume that E[X(V] = E[X(®)] = 0.
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@ we observe a dataset (x1,y1), (x2,y2), .-, (Xn, ¥n)

@ use the same notations as in the previous lectures

351 FORNC)
Y= | X=1.. ..

- 1 @)

i X5 Xp
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The lasso estimator solves the optimization problem
~ o1
B = min SIY = X8I+ A(180| + 52).

We want to investigate the conditions under which we can verify that

sign(B(l)) = sign(B*(l)) and A® =0
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Sub-gradient

Issue: the penalty of lasso is non-differentiable

Definition
We say that a vector s € RP is a subgradient for the /1-norm evaluated at
B € RP, written as s € 9||f|| if for i =1,..., p we have

s0) = sign(8) if ) £0 and s e[~1,1] otherwise.
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Properties of lasso solutions

(a) A vector 3 solve the lasso program if and only if there exists a
z € 0||5|| such that

XT(Y —X3)—X2=0 (0.1)

(b) Suppose that the subgradient vector satisfies the strict dual feasibility
condition

2] < 1
then any lasso solution [ satisfies 5(2) = 0.

(c) Under the condition of part (b), if X(!) £ 0, then f3 is the unique
lasso solution.
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The primal-dual witness method.

The primal-dual witness (PDW) method consists of constructing a pair of
(8, Z) according to the following steps:

o First, we obtain 3(!) by solving the restricted lasso problem

B(l): min E

jmin o SIY = X813+ A1),

Choose a subgradient 2(1) € R for the ¢1-norm evaluated at 5()

@ Second, we solve for a vector (2 satisfying equation (0.1), and check
whether or not the dual feasibility condition [2(?)| < 1 is satisfied

@ Third, we check whether the sign consistency condition
2 = sign(p*M)

is satisfied.
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@ This procedure is not a practical method for solving the ¢1-regularized
optimization problem, since solving the restricted problem in Step 1
requires knowledge about the sparsity of g*

@ Rather, the utility of this constructive procedure is as a proof
technique: it succeeds if and only if the lasso has a optimal solution
with the correct signed support.
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A more detailed computation

We note that the matrix form of equation (0.1) can be written as
XO)T (Y — xW M) — x5y — x2(1) = ¢

X7 (Y — xW M) — x5y — x2() = ¢

To simplify the notation, we denote

Cj = X T(X0)
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o we find SV and (1) that satisfies
XDy — XMWy — x50 = ¢

@ Moreover, to make sure that the sign consistency in Step 3 is
satisfied, we impose that

70 = sign(gM) and O C LIXOTY — Asign(s*M)).
This is acceptable as long as #(1) € 9|5(M|. That is,

sign(51) = sign(5*V)
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@ Step 2:
[XPT (Y = XMWy — \5() = o

@ Choose
52) _ i[x(z)]r(y VOE N

We want |#(2)] < 1.
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In principle, we want two conditions:
o sign(3*M)) = sign(53*®) + A)
where
A = (XN Te — Asign(5*D)))
o 29| < 1 where
50— %[X@)]T(X(l)A +o)
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Zero-noise setting

@ we assume that the observations are collected with no noise (e = 0).
@ Then
A = —Ciy" Asign(5°Y)

and

50) _ _71C21A = Cu Ciitsign(8"V)

@ Conditions

o Mutual incoherence: |Cy Cjjt| < 1.
o Minimum signal: |3*®)| > AC;!
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Co-linearity

o Mutual incoherence: |Cy C;7t| < 1.

@ Recall that
Cio = [XW)T[X@] = 3 5D

@ When n is large
1
~Ciz~ E ([x(l)]T[x(2>]) — Cov(XW, x@)

since E[XM] = E[X?®] = 0.
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e Mutual incoherence: |Gy Cfl1| < 1.
The condition roughly means that the covariance between the
variables X(1) and X3 are less than the variance of X(1)
o Minimum signal: |3*()| > AC7*
Since 1
;Cll — Var(X(l)),

this means that when n — 0o, we needs

ﬁ—>0
n
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In principle, we want two conditions:

o sign(3*(M) = sign(3*® + A)
where

A = C (XD Te = Asign(5*1))))
o || < 1 where
5 = %[x@)]T(x(l)A +¢)

@ We want an upper bound on

XM Te  and[X?)]Te
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Properties of Gaussian random variables

In principle, we want two conditions:

° [X(l)]Te is a Gaussian random variable with mean 0 and standard
deviation o || X

@ Thus, there exists a universal constant C such that

XM Te| < CJ\/nVar(X(l)) log (;)

with probability at least 1 — §
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Without loss of generality, assume " = (B, ..., ’;,BEH,...B;)T where B #0 for j=1,.,9
and p7 =0for j=g+1,...,p. Let ﬂ’[‘lj . (ﬂ’l‘,...,ﬁz)‘ and ﬁFZJ . (ﬁ;_l,...,ﬁ;). Now write X, (1)
and Xy, (2) as the first g and last p — g columns of X, respectively and let C" = anTXn. By setting

7y = 1Xa(1)%a(1). G = 1Xa(2)Xa(2), Cf, = X (1) Xa(2) and €3, = 1%a(2)Xa(1). C* can
then be expressed in a block-wise form as follows:

Cﬂ n
"o 11 L2
c=(a &)
Assuming C7, is invertible, we define the following Irrepresentable Conditions
Strong Irrepresentable Condition. There exists a positive constant vector )

€3, (C?l)_lf'ign(ﬁ’[‘n)‘ <1-m,

where 1is a p— g by 1 vector of 1’s and the inequality holds element-wise.
Weak Irrepresentable Condition.

|C§1(Ci'1)’lsign(ﬁ?l))| <1,
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