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Mathematical techniques in data sciences

A short introduction to statistical learning theory

Tree-based methods — boosting and bootstrapping

SVM – the kernel trick

Linear regression – regularization and feature selection
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The story so far...
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Failure of ERM

We hope that
R(ĥn) ≈ R(h∗),

but in general, this is not be true if the hypothesis space H is too large
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Underfiting/Overfitting
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Regularization

If we want to learn well:

dimension(H) ≪ n

How do we get that?

Model selection

Feature selection

Regularization
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Regularization techniques

Explicit:

Adding penalties into loss functions

Dropout

Implicit:

Design networks to capture invariance

Data augmentation

Use special optimizer

Early stopping
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Linear regression

Linear model

Y = β(0) + β(1)X (1) + β(2)X (2) + . . . β(p)X (p) + ϵ

p: number of variables (X ∈ Rp)

n: number of observations
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Classical setting

Linear model

Y = β(0) + β(1)X (1) + β(2)X (2) + . . . β(p)X (p)

n ≫ p (n much larger than p). With enough observations, we hope
to be able to build a good model

even if the true relationship between the variables is not linear, we
can include transformations of variables

X (p+1) = [X (1)]2, X (p+2) = X (1)X (3), . . .

adding transformed variables can increase p significantly
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Trade-off: complexity vs. interpretability

Linear model

Y = β(1)X (1) + β(2)X (2) + . . . β(p)X (p) + ϵ

Higher values of p lead to more complex model → increases
prediction power/accuracy

Higher values of p make it more difficult to interpret the model: It is
often the case that some or many of the variables regression model
are in fact not associated with the response

(Lecture 13: Shrinkage methods for linear regression)Mathematical techniques in data science 10 / 73



Moderns settings

Linear model

Y = β(0) + β(1)X (1) + β(2)X (2) + . . . β(p)X (p) + ϵ

it is often the case that n ≪ p

requires supplementary assumptions (e.g. sparsity)

can still build good models with very few observations.
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Linear regression by least squares
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Settings

Y ∈ Rn×1, X ∈ Rn×(p+1)

Y =


y1
y2
. . .
yn

 X =

 1 | | . . . |
. . . x (1) x (2) . . . x (p)

1 | | . . . |


where x (1), x (2), . . . , x (p) ∈ Rn×1 are the observations of
X (1),X (2), . . . ,X (p).

We want

Y = β(0) + β(1)X (1) + β(2)X (2) + . . . β(p)X (p)
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Settings

We want

Y = β(0) + β(1)X (1) + β(2)X (2) + . . . β(p)X (p)

Equivalent to

Y = Xβ, β =


β(0)

β(1)

. . .

β(p)
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Least squares

Y = Xβ

In general, the system has no solution (n ≫ p ) or infinitely many
solutions (n ≪ p)

The most popular estimation method is least squares, in which we
pick the coefficients to minimize the residual sum of squares

RSS(β) =
n∑

i=1

(yi − f (xi ))
2
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Least squares
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Least squares

Minimize the residual sum of squares

RSS(β) =
n∑

i=1

(yi − f (xi ))
2

Or alternatively,
β̂ = min

β
∥Y − Xβ∥22
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Least squares

Minimize the residual sum of squares

RSS(β) =
n∑

i=1

(yi − f (xi ))
2

=
n∑

i=1

(
yi − β(0) − β(1)x

(1)
i − β(2)x

(2)
i − . . .− β(p)x

(p)
i

)2

Taking derivative

∂RSS

∂β(j)
=

n∑
i=1

2(yi − xiβ)x
(j)
i = 2[x (j)]T (Y − Xβ)
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Least squares

Set derivatives to zero

XT (Y − Xβ) = 0

If XTX is invertible
β̂ = (XTX )−1XTY

Predicted values

Ŷ = Xtest β̂ = Xtest(X
T
trainXtrain)

−1XT
trainYtrain
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The coefficient of determination

The coefficient of determination, called “R squared” and denoted by

R2 = 1−
∑n

i=1 (yi − ŷi )
2∑n

i=1 (yi − ȳ)2

where ȳ is the average of y1, . . . , yn

Often used to measure the quality of a linear model

A model with a R2 close to 1 fit the data well.
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The coefficient of determination

In some sense, the R2 measures how much better is the prediction
compared to a constant prediction
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The adjusted coefficient of multiple determination

It is desirable to adjust R2 to take account of the fact that its value
may be quite high just because many predictors were used relative to
the amount of data

The adjusted coefficient of multiple determination

R2
a = 1−

1
n−p−1

∑n
i=1 (yi − ŷi )

2

1
n−1

∑n
i=1 (yi − ȳ)2

where ȳ is the average of y1, . . . , yn
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sklearn.linear model.LinearRegression
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sklearn.preprocessing.PolynomialFeatures
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Questions

Is at least one of the predictors X1,X2, . . . ,Xp useful in predicting the
response?

Do all the predictors help to explain Y , or is only a subset of the
predictors useful?
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Subset selection
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Trade-off: complexity vs. interpretability

Linear model

Y = β(1)X (1) + β(2)X (2) + . . . β(p)X (p) + ϵ

Higher values of p lead to more complex model → increases
prediction power/accuracy

Higher values of p make it more difficult to interpret the model

Ideally, we would like to try out a lot of different models, each
containing a different subset of the predictors, then select the best
model

Problem: there are 2p models that contain subsets of p variables
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Best subset selection
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Forward stepwise selection
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Backward stepwise selection
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Hybrid approach

Hybrid versions of forward and backward stepwise selection are
available

variables are added to the model sequentially

after adding each new variable, the method may also remove any
variables that no longer provide an improvement in the model fit
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Adjusted training errors

Adjusted R2

Mallow’s Cp

Cp =
1

n
(RSS + 2d σ̂2)

where σ̂2 is an estimate of the variance of the error, d is the number
of predictors

AIC (Akaike information criterion)

AIC =
1

nσ̂2
(RSS + 2d σ̂2)

BIC (Bayesian information criterion)

BIC =
1

nσ̂2
(RSS + log(n)σ̂2)
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sklearn does not support subset selection

(Lecture 13: Shrinkage methods for linear regression)Mathematical techniques in data science 33 / 73



Shrinkage methods
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Settings

Y ∈ Rn×1, X ∈ Rn×(p+1)

Y =


y1
y2
. . .
yn

 X =

 1 | | . . . |
. . . x (1) x (2) . . . x (p)

1 | | . . . |
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Linear model: settings

Linear model

Y = β(0) + β(1)X (1) + β(2)X (2) + . . . β(p)X (p) + ϵ

Equivalent to

Y = Xβ, β =


β(0)

β(1)

. . .

β(p)


Least squares regression

β̂LS = min
β

∥Y− Xβ∥22
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ℓ0 regularization

ℓ0 regularization

β̂0 = min
β

∥Y− Xβ∥22 + λ

p∑
i=1

1β(i) ̸=0

where λ > 0 is a parameter

pay a fixed price λ for including a given variable into the model

variables that do not significantly contribute to reducing the error are
excluded from the model (i.e., βi = 0)

problem: difficult to solve (combinatorial optimization). Cannot be
solved efficiently for a large number of variables.
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ℓ2 (Tikhonov) regularization

Ridge regression/ Tikhonov regularization

β̂RIDGE = min
β

∥Y− Xβ∥22 + λ

p∑
j=1

[β(j)]2

where λ > 0 is a parameter

shrinks the coefficients by imposing a penalty on their size

penalty is a smooth function.

easy to solve (solution can be written in closed form)

can be used to regularize a rank deficient problem (n < p)
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ℓ2 (Tikhonov) regularization

∂
(
∥Y− Xβ∥22 + λ∥β∥2

)
∂β

= 2XT (Y− Xβ) + 2λβ

The critical point satisfies

(XTX+ λI)β = XTY

Note: (XTX+ λI) is positive definite, and thus invertible

Thus
β̂RIDGE = (XTX+ λI)−1XTY
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ℓ2 (Tikhonov) regularization

β̂RIDGE = (XTX+ λI)−1XTY

When λ > 0, the estimator is defined even when n < p

When λ = 0 and n > p, we recover the usual least squares solution
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The Lasso
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Lasso

The Lasso (Least Absolute Shrinkage and Selection Operator)

β̂lasso = min
β

∥Y− Xβ∥22 + λ

p∑
j=1

|β(j)|

As with ridge regression, the lasso shrinks the coefficient estimates
towards zero

However, the ℓ1 penalty has the effect of forcing some of the
coefficient estimates to be exactly equal to zero when λ is sufficiently
large

the lasso performs variable selection → models are easier to interpret
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Lasso: alternative form

Alternative form of lasso (using the Lagrangian and min-max argument)

min
β

∥Y− Xβ∥22

subject to

p∑
j=1

|β(j)| ≤ s
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Lasso: alternative form
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Lasso

The Lasso:

β̂lasso = min
β

∥Y− Xβ∥22 + λ

p∑
j=1

|β(j)|

More “global” approach to selecting variables compared to previously
discussed greedy approaches

Can be seen as a convex relaxation of the β̂0 problem

No closed form solution, but can solved efficiently using convex
optimization methods.

Performs well in practice

Very popular. Active area of research
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Other shrinkage methods

ℓq regularization (q ≥ 0):

β̂ = min
β

∥Y− Xβ∥22 + λ

p∑
j=1

[β(j)]q
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Other shrinkage methods

Elastic net

λ

p∑
j=1

α[β(j)]2 + (1− α)|β(j)|
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Lasso: alternative form

Alternative form of lasso (using the Lagrangian and min-max argument)

min
β

∥Y− Xβ∥22

subject to

p∑
j=1

|β(j)| ≤ s
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Regularization

ℓ0 regularization

β̂0 = min
β

∥Y− Xβ∥22 + λ

p∑
i=1

1β(i) ̸=0

Ridge regression/Tikhonov regularization

β̂RIDGE = min
β

∥Y− Xβ∥22 + λ

p∑
j=1

[β(j)]2

Lasso

β̂lasso = min
β

∥Y− Xβ∥22 + λ

p∑
j=1

|β(j)|
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Choosing parameters: cross-validation

ℓ0, ridge, lasso have regularization parameters λ

We obtain a family of estimators as we vary the parameter(s)

optimal parameters needs to be chosen in a principled way

cross-validation is a popular approach for rigorously choosing
parameters.
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Lasso: model selection consistency
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Lasso: alternative form

Alternative form of lasso (using the Lagrangian and min-max argument)

min
β

∥Y− Xβ∥22

subject to

p∑
j=1

|β(j)| ≤ s
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Lasso: alternative form
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When the lasso fails
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When the lasso fails
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Model selection consistency lasso

Note: Model consistency of lasso

Further readings:

Zhao and Yu (2006)
Wainright (2009)
Sparsity, the lasso, and friends (Ryan Tibshirani)
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Settings

We start with the simple linear regression problem

Y = β(1)X (1) + β(2)X (2) + ϵ, ϵ ∼ N (0, σ2)

Sparsity: assume that the data is generated using the “true” vector of
parameters β∗ = (β∗(1), 0).

We assume that E [X (1)] = E [X (2)] = 0.
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Matrix form

we observe a dataset (x1, y1), (x2, y2), . . . , (xn, yn)

use the same notations as in the previous lectures

Y =


y1
y2
. . .
yn

 X =

x (1)1 x
(2)
1

. . . . . .

x
(1)
n x

(2)
n
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Goal

The lasso estimator solves the optimization problem

β̂ = min
β

1

2
∥Y− Xβ∥22 + λ(|β(1)|+ |β(2)|).

We want to investigate the conditions under which we can verify that

sign(β̂(1)) = sign(β∗(1)) and β̂(2) = 0
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Sub-gradient

Issue: the penalty of lasso is non-differentiable

Definition

We say that a vector s ∈ Rp is a subgradient for the ℓ1-norm evaluated at
β ∈ Rp, written as s ∈ ∂∥β∥ if for i = 1, . . . , p we have

s(i) = sign(β(i)) if β(i) ̸= 0 and si ∈ [−1, 1] otherwise.
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Properties of lasso solutions

Theorem

(a) A vector β̂ solve the lasso program if and only if there exists a
ẑ ∈ ∂∥β̂∥ such that

XT (Y− Xβ̂)− λẑ = 0 (0.1)

(b) Suppose that the subgradient vector satisfies the strict dual feasibility
condition

|ẑ(2)| < 1

then any lasso solution β̃ satisfies β̃(2) = 0.

(c) Under the condition of part (b), if X(1) ̸= 0, then β̂ is the unique
lasso solution.
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The primal-dual witness method.

The primal-dual witness (PDW) method consists of constructing a pair of
(β̃, z̃) according to the following steps:

First, we obtain β̃(1) by solving the restricted lasso problem

β̃(1) = min
β=(β(1),0)

1

2
∥Y− Xβ∥22 + λ(|β(1)|).

Choose a subgradient z̃(1) ∈ R for the ℓ1-norm evaluated at β̃(1)

Second, we solve for a vector z̃(2) satisfying equation (0.1), and check
whether or not the dual feasibility condition |z̃(2)| < 1 is satisfied

Third, we check whether the sign consistency condition

z̃(1) = sign(β∗(1))

is satisfied.
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PDW

This procedure is not a practical method for solving the ℓ1-regularized
optimization problem, since solving the restricted problem in Step 1
requires knowledge about the sparsity of β∗

Rather, the utility of this constructive procedure is as a proof
technique: it succeeds if and only if the lasso has a optimal solution
with the correct signed support.
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A more detailed computation

We note that the matrix form of equation (0.1) can be written as

[X(1)]T (Y− X(1)β(1) − X(2)β(2))− λẑ(1) = 0

[X(2)]T (Y− X(1)β(1) − X(2)β(2))− λẑ(2) = 0

To simplify the notation, we denote

Cij = [X(i)]T [X(j)]
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Step 1

we find β̃(1) and z̃(1) that satisfies

[X(1)]T (Y− X(1)β̃(1))− λz̃(1) = 0

Moreover, to make sure that the sign consistency in Step 3 is
satisfied, we impose that

z̃(1) = sign(β∗(1)) and β̃(1) = C−1
11 ([X(1)]TY− λsign(β∗(1))).

This is acceptable as long as z̃(1) ∈ ∂|β̃(1)|. That is,

sign(β̃(1)) = sign(β∗(1))
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Step 2

Step 2:
[X(2)]T (Y− X(1)β̃(1))− λz̃(2) = 0

Choose

z̃(2) =
1

λ
[X(2)]T (Y− X(1)β̃(1)).

We want |z̃(2)| < 1.
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Conditions

In principle, we want two conditions:

sign(β∗(1)) = sign(β∗(1) +∆)
where

∆ = C−1
11 ([X(1)]T ϵ− λsign(β∗(1))))

|z̃(2)| < 1 where

z̃(2) =
1

λ
[X(2)]T (X(1)∆+ ϵ)
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Zero-noise setting

we assume that the observations are collected with no noise (ϵ = 0).

Then
∆ = −C−1

11 λsign(β∗(1))

and

z̃(2) =
−1

λ
C21∆ = C21C

−1
11 sign(β∗(1))

Conditions

Mutual incoherence: |C21C
−1
11 | < 1.

Minimum signal: |β∗(1)| > λC−1
11
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Co-linearity

Mutual incoherence: |C21C
−1
11 | < 1.

Recall that
C12 = [X(1)]T [X(2)] =

∑
i

x
(1)
i x

(2)
i

When n is large

1

n
C12 → E

(
[X (1)]T [X (2)]

)
= Cov(X (1),X (2))

since E [X (1)] = E [X (2)] = 0.
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Conditions

Mutual incoherence: |C21C
−1
11 | < 1.

The condition roughly means that the covariance between the
variables X (1) and X (2) are less than the variance of X (1)

Minimum signal: |β∗(1)| > λC−1
11

Since
1

n
C11 → Var(X (1)),

this means that when n → ∞, we needs

λn

n
→ 0
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Noisy setting

In principle, we want two conditions:

sign(β∗(1)) = sign(β∗(1) +∆)
where

∆ = C−1
11 ([X(1)]T ϵ− λsign(β∗(1))))

|z̃(2)| < 1 where

z̃(2) =
1

λ
[X(2)]T (X(1)∆+ ϵ)

We want an upper bound on

[X(1)]T ϵ and[X(2)]T ϵ
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Properties of Gaussian random variables

In principle, we want two conditions:

[X(1)]T ϵ is a Gaussian random variable with mean 0 and standard
deviation σ∥X(1)∥2
Thus, there exists a universal constant C such that

|[X(1)]T ϵ| ≤ Cσ

√
nVar(X (1)) log

(
1

δ

)
with probability at least 1− δ
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General settings
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