Predicting Disaster

Kathryn Beck, Lindsay Jacobs, Nicole Manno, and Becca Shipper

Abstract—Kaggle’s "Titanic- Machine Learning from Disaster” competition provides an interesting challenge of accurately predicting
the survival of passengers aboard the historic Titanic, while using a data set with many missing values. We utilize techniques of feature
engineering and data cleaning in order to remedy the missing cabin, age, and embarked values. For our model, we first compare the
performance of eight different machine learning models. We use cross-validation scores to decide on features to drop that have low
correlation with the results. Lastly, we hypertune the four top-performing models by applying a gridsearch in order to determine the

hyper-parameters that result in the strongest model.

1 INTRODUCTION

HE sinking of the Titanic is one of the most infamous

historical disasters to date. On April 14-15, 1912, the
Royal Mail Ship Titanic, or Titanic for short, sank during
its voyage from Southampton, England to New York City
due to the collision of the Titanic with an iceberg. Of the
2,200 people onboard the ship, it is estimated that 1,500
passengers and crew members had died. It is presumed
that the massive death toll was due to the Titanic’s lack of
lifeboats, being only 20. Furthermore, of those 20 lifeboats,
many were only half-full or sometimes even less. As a result
of this tragedy, many laws were created that protected the
lives of passengers and crew members on seas [1].

More than 100 years later, surviving the sinkage of the
Titanic has become an interesting concept. Kaggle, an online
community of data scientists and machine learning prac-
titioners, has a data set called “Titanic- Machine Learning
from Disaster” that contains passenger details and survival
information accessible to its users [2]. Based off the data
set provided by Kaggle, we want to predict survival of
a given passenger. To do this, we will first evaluate and
visualize the data set for better understanding and to see
which features have the largest impact. Then, we will use
eight distinct classification algorithms with their default
parameters to create eight models that predict survival.
Once the models have been created, we will then select the
top four performing models and adjust their parameters to
improve accuracy.

2 RELATED WORK

In addition to Kaggle offering data sets for their users to
explore and build models using data science and machine
learning techniques, Kaggle offers competitions. Users are
scored on the accuracy of their model; the higher the accu-
racy, the higher they rank on the scoreboard. The Titanic
data set is one of many competitions offered by Kaggle.
However, it is an extremely popular one as it is considered
to be a beginner-friendly competition. With that being said,
a lot of models have been created to predict survival on
the Titanic. On the leadership board, there are about 100
competitors who have created a perfect or near-perfect
model for predicting survival.

IEEE Demo Template for Computer Science Journals was used in this article.

Many competitors have written reports, blogs, and how-
to guides, detailing their methods and experiment that
they submitted to the Kaggle competition. We built off of
some of this previous work, particularly in our process of
data cleaning and feature engineering. A common theme
in previous work is to focus on novel designs for feature
engineering, as well as how to appropriately clean the data
set, as there is a large amount of data missing. We attempted
similar techniques to fill in the missing data as discussed in
[5] and [7]. We also referred to [6] to give ideas for our initial
analysis of the data set.

3 DATA

Creating a model for a data set requires understanding the
data and the different features. For our data set, we are
attempting to accurately predict if a passenger survived the
sinking of the Titanic. The data set provided through Kaggle
is already split into two subsets of testing and training data.
As the label is meant to be predicted by the final model
entered into the competition, the testing set does not have
the Survival feature. However, we decided to work only
with the training data, and split it into new training and
testing data in order to use supervised learning techniques
to develop our model. For the remainder of the paper, when
we refer to the data set, we are referring to the original
training data set provided by Kaggle.

First, we notice that our data set includes 891 passengers,
where 549 of the passengers had died and the remaining
342 had survived. In Table 1, you will notice the different
features that the data set has, which will be used to create
our models.

When analyzing the percentages of survival based on a
specific feature, we observed that class, sex, and age seem
to influence a passenger’s survival. In Figure 1, notice that
children under the age of ten had a much larger chance
of surviving than if they were older. Furthermore, Figure 2
provides even more detail by stratifying the data in Figure 1
by sex. The dramatic difference in the two bar graphs in Fig-
ure 2 implies that an individual was more likely to survive if
they were female. Next, Figure 3 depicts the survival rate by
class. Notice that class 3 has a large death rate. This aligns
with our intuition that wealthier individuals were the more
likely to survive based on cultural norms and privilege.

TABLE 1
Titanic Data Set Features
Feature Definition Key
survival Survival 0 for No and 1 for Yes
pclass Ticket class 1is 1st, 2 is 2nd,
and 3 for 3rd
sex Sex N/A
age Age in years N/A
sbsp Number of sibilings & N/A
spouses aboard
parch Number of parents & N/A
children aboard
ticket Ticket number N/A
fare Passenger fare N/A
cabin Cabin number N/A
C for Cherbourg, Q for
embarked Port of Embarkation Queenstown, and S
for Southampton
Survival by Age
&0 M Survived
_ =0
50 m . 1
a0
g !

12 : Fﬂﬂjm | wmﬂlmngon -

Ag

Fig. 1. Survival Count by Age

Finally, Figure 4 displays the data from Figure 3 stratified
by sex. Again, similar to the observation made from Figure
2, sex has a large impact on survival. Very few women died
in the first two classes. Even for the 3rd class, women still
had a greater chance for survival.

Another important objective when evaluating a data set
before modeling is to identify any missing data. Notable
data that was missing were values for the age and cabin fea-
tures. There were 177 values (approximately 20%) missing
and 681 values (approximately 77%) missing for the age and
cabin features, respectively. Since age has been observed to
be a great indicator of survival and cabin can indicate class,

Female Survival by Age Male Survival by Age

5

— M Survived &0 Survived
0 o o
31 /1
M 50
5
40
w20 abs
[r
5 5 2o
IS 15 q
10 20
Mgl
0 T 0
o 20 40 B0 o 20 40 60 80

Fig. 2. Survival Count by Age and Sex

Survival by Class

Survived
350 0

1
300
250

200

count

150

100

Pclass

Fig. 3. Survival Count by Class

Female Survival by Class Male Survival by Class

Survived | 300 1 Survived
o o
80
1 250 1
60 200
£ E
g 150
20 &
100
20
50
o o

1 2 3 1 2 3
Pclass Pclass

Fig. 4. Survival Count by Class and Sex

TABLE 2
Values Used to Fill Missing Ages

Title Median Age
Master 3.5
Miss 21
Ms. 28
Mr. 31
Mrs. 35
Dr. 36

which also has a large impact, it was important to remediate
the missing data.

Every passenger onboard had a title recorded. Given
the era, we estimated that the milestones relating to a
person’s title would be largely age based. Thus, the method
to remediate the missing age values was to first calculate
the median age for passengers with each title. Then, pas-
sengers with missing ages were assigned the median age
corresponding to their title. Table 2 displays the median ages
used to rectify the missing data.

Although we were successful in amending the missing
age values for our data set, the same cannot be said for the
cabin feature. One method attempted was to find passengers
with the same ticket number and available cabin values.
However, this resulted in populating only ten missing val-
ues. As a result, we decided to drop the cabin feature in
favor of a generated feature titled "Deck’ that used the first
letter of the cabin feature. For example, a passenger in cabin
A30 would then be on deck A. Those with remaining null
cabin values were assigned to deck N as a place holder. A
logistic regression model taking into account class and fare

Test Accuracy by Model Train Accuracy by Model

%

&
®
& ®
® ®
$ $

o e
SSFESEOT L SFESSOS

Fig. 5. Performance for each Classification Algorithm

values was then used to assign a deck value for those we
could not remediate via our original cabin search. Moving
forward, we dropped the cabin feature and utilized the deck
feature as a proxy.

4 METHODS

Eight classification algorithms were chosen to create models
that predict survival on the Titanic. They were

e SVM (Support Vector Machine),

o KNN (K-Nearest Neighbors),

o GBC (Gradient Boosting Classifier),

e RF (Random Forest),

e DT (Decision Tree),

¢ XGB (XGBoost),

¢ SGD (Stochastic Gradient Descent), and
e LR (Logistic Regression).

Before we created the models from the eight above algo-
rithms, a pre-processing procedure took place. First, it is
common practice to initially split the data set into testing
and training subsets. We split the original training data set
provide by Kaggle into new subsets of testing and training
data. We split the 891 elements of training data into 25%
for the new testing set and 75% for the new training set.
The next step was to create two subsets, X and Y, from
both the test and training sets. The X set contains all of the
features except name, passenger ID, and cabin number since
name and passenger ID does not have any correlation with
survival and cabin number is missing over three quarters of
its values. On the other hand, the Y set contains the survival
data.

Once the training and testing X and Y sets had been
established, we then used One-Hot Encoding for the cat-
egorical features and scaled the numerical data. Again,
this is common practice since machine learning algorithms
requires numerical input and output. Finally, we ran the
eight classification algorithms with their default settings to
produce eight models for predicting survival. The results
are shown in Figure 5.

From Figure 5, what we can immediately see is that the
four bar graphs in the center (representing Gradient Boost-
ing, Random Forest, Decision Tree, and XGBoost) performed
the best. The numerical values for their accuracies are dis-
played in Table 3. However, it may be the case that some

TABLE 3
Top Four Performing Models

Model Train Accuracy | Test Accuracy
Random Forest 99.85% 82.96%
Decision Tree 99.85% 82.05 %
Gradient Boosting 93.86 % 82.51 %
XGBoost 90.42 % 82.06 %
TABLE 4
Cross-Validation Mean Accuracies
Model Original CV Mean | New CV Mean
Random Forest 83.84% 83.28%
Decision Tree 78.68% 79.24 %
Gradient Boosting 82.94 % 83.61 %
XGBoost 83.50 % 83.61 %

overfitting may have occurred since the training accuracy
for Random Forest and Decision Tree are nearly perfect.
Nonetheless, of the four top performing models with default
parameters, Random Forest had the highest accuracy.

5 EXPERIMENTS

Once we had evaluated the top performing models, we
wanted to see how the models would be affected when the
parameters were adjusted for optimal accuracy. The process
of choosing a set of hyper-parameters for a machine learning
algorithm is known as hyper-tuning [3].

The first attempt to improve the accuracy of our models
was to evaluate the features based on their importance
and remove the 3 least effective features in the hopes of
simplifying our model. For the Decision Tree, XGBoost, and
Gradient Boosting Classifier algorithms, the features that
were removed were parch, embarked, and deck. On the
other hand, the features removed from Random Forest were
sibsp, parch, and embarked. Once we had removed each of
the three least effective features for each of the models, we
again evaluated their performance, this time using cross-
validation scores. Table 4 displays the cross validation-
scores for each model before and after the least impactful
features were removed. Notice that the cross-validation
score for Random Forest is slightly lower than before the
features were removed. Despite this decrease in the mean
cross-validation score, when hyper-tuning we were able to
achieve a better result with the Random Forest with fewer
features. For the remainder of the paper, each model will
be further tuned without including their respective lowest 3
features. To do this, we turned to a new method of hyper-
tuning called grid search.

Grid search is a tuning technique that finds optimal
hyper-parameters for a model. For instance, for the K-
Nearest Neighbors algorithm, grid search finds a value k
that improves the performance of the model. In essence,
it is an automation of trial and error for picking hyper-
parameters. Although it is deemed as effective among the
data science community, this certainly does not mean it
doesn’t have its qualms. Because it is an exhaustive method,
it can take quite a long time to finish the operation if the
hyper-parameter range or number is high [4].

To test grid search on our models, we used Grid-
SearchCV from sklearn. We then provided a list of possible

TABLE 5
Cross-Validation Mean Accuracies

Model Previous Best CV Mean | New CV Mean
Random Forest 83.84% 84.85%
Decision Tree 79.24% 82.60 %
Gradient Boosting 83.61 % 84.84 %
XGBoost 83.61 % 84.40 %

values for a few hyper-parameters for each model and ran
the grid search on 5 folds. When we integrated grid search
into our experiment, we found that each model’s previous
best accuracy had improved, with Random Forest, XGBoost,
and Gradient Boosting improving by 1% and Decision Tree
improving by 3%. These results are displayed in Table 5.
Once again, we find Random Forest to be the top performer.

6 CONCLUSION

From our initial observations, although many features can
have an impact on survival, the most influential feature was
sex. That is, you were far more likely to survive if you were
female than if you were male. Following the visualization of
our data set, we found that the top performing models that
gave the best accuracy with their default parameters were
Random Forest, XGBoost, Gradient Boosting, and Decision
Tree. Of these four, Random Forest performed the best.
From there, we were able to improve each models accuracy
by approximately 1% by using grid search to find optimal
hyper-parameters for each model. While our models did
not yield incredibly accurate results, we were faced with a
relatively small data set that required a good deal of clean-
ing and modeling to remedy the null values. In addition,
this event was filled with human emotions and decision
making that we may not be able to capture in data alone.
Everything considered, Kaggle’s Titanic data set is a great
data set for introducing individuals to machine learning
binary classification and the scientific process of using data
to tell a story.

REFERENCES

[1] A. Gavin and C. Zarr, They Said it Couldn’t Sink, available at
the URL: https:/ /www.archives.gov/publications/prologue/2012/
spring/titanic.html

[2] A. Goldbloom, Titanic- Machine Learning from Disaster, available at
the URL: https:/ /www.kaggle.com/competitions/titanic/data

[3] J.Jordan, Hyperparameter Tuning for Machine Learning Models, avail-
able at the URL: https://www.jeremyjordan.me/hyperparameter-
tuning/

[4] E. Malik, What is Grid Search?, available at the URL:
https:/ /medium.com/fintechexplained /what-is-grid-search-
c01fe886ef0a

[5] A. Besbes, How To Start with Kaggle - An Introduc-
tion to the Titanic Challenge, available at the URL:
https:/ /medium.datadriveninvestor.com/start-with-kaggle-a-
comprehensive-guide-to-solve-the-titanic-challenge-8ac5815b0473

[6] S. Mukhija, A beginner’s guide to Kaggle’s Titanic problem, available
at the URL:https:/ /towardsdatascience.com/a-beginners-guide-to-
kaggle-s-titanic-problem-3193cb56f6ca

[7] Basic Feature Engineering with the Titanic Data, available at the
URL:https:/ /triangleinequality.wordpress.com/2013/09/08 /basic-
feature-engineering-with-the-titanic-data/

